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A b s t r a c t

O bject-oriented approaches to the design and im plem entation of com puter 

system s has been an active a rea  of research during the 1980's. This thesis explores the 

application of this m ethodology to the design and im plem entation o f a persistent object 

storage system  to support a  Com puter-A ided Softw are Engineering (C A S E ) environm ent.

The  system uses a com m ercially available database m anagem ent system (Z IM ) as 

the starting point for a persistent object m anager for the program m ing language  

O bjective -C . The  system  itself is im plem ented in O bjective-C  and som e assem bler.
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1. Introduction

1.1. Motivation for the Research

As computer-based systems have become larger and more complex, much ot the 

research in computer science and software engineering has gone into tools and methodologies 

to improve the manner in which they are specified, designed and implemented The goals of 

researchers in many seemingly different facets of software technology are often remarkably 

similar. A few examples of issues being addressed are: the complete and accurate specification 

of requirements and their communication to the implementers; the design of an effective solution 

to the problem at hand; the efficient use of both computer and human resources for the 

implementation, operation, and maintenance of the system; and the management of change 

during its entire life.

It has been argued persuasively (Brooks, 1987), that creating software systems to solve 

large and interesting problems is inherently complex. There is no undiscovered magic that will 

make the process suddenly faster or easier; any improvements will be in increments of 

percentages, rather than orders of magnitude. However, as computers become more pervasive 

in society and as they are called on to perform more challenging functions, software issues such 

as reliability, maintainability, and malleability are becoming more critical Two areas of research 

which address these concerns are software methodologies and tools

Software methodologies provide a consistent approach to the specification, design, and 

implementation of systems. They are the principles by which software engineers build their 

systems. One software methodology which has been the focus of much interest in the last
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decade is the 'object-oriented' approach. This paradigm has been used to design and build 

systems, to create new programming languages, and as a data modeling technique.

Software tools - commonly referred to as Computer-Aided Software Engineering (CASE; 

tools - attempt to automate as much of the software process as possible. Software is a labour 

intensive endeavour, and software engineers are expensive. As a result, there is on-going 

research into automating virtually every facet of the software process. Some examples include:

• project planning and control,

• change and configuration management,

• specification and design capture (using one or more methodologies),

• source code control and version release,

• performance analysis and testing,

• documentation.

While individual CASE tools are cedninly useful, an even more important goal is the development 

of CASE environments, where multiple tools can work together in a seamless fashion. Perhaps 

the greatest motivation for CASE environments comes from the need to handle change. For 

example, keeping documentation up to date with changes in the source code is done best when 

there exists a tool which creates and maintains the dependencies between them. CASE 

environments are a promising technology for dealing with large, complex and multi-person 

software projects.

One of the major requirements tor the creation of a CASE environment is that the tools 

supported be able to share data between them. As a number of researchers have noted (Wile 

and Allard, 1986), (Belkhatir and Estublier, 1986) (Gallo, Minot and Thomas, 1986) (Atwood, 

1985), the best way to achieve this is through the use of an integrated database system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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1.2. The Application: The ARTTisan Toolset

The goal of this research is to provide a stable, persistent object store for a Computer- 

Aided Software Engineering (CASE) environment being developed at the Department of 

Systems and Computer Engineering under the auspices of the Advanced Real Time Toolset 

(ARTT) project. The environment is based on a network of SUN workstations running Berkley 

UNIX. While the ARTT project includes a number of different thrusts, this work primarily 

addresses the needs of the integrated toolset known as ARTTisan.

The following sections briefly describe the ARTTisan toolset and the design notations 

that it supports.

T h e  T o o ls e t

ARTTisan attempts to meet the design needs of a programmer developing real-time 

software. It is primarily targeted to addressing the nteds of 'programming-in-the-small\ as it 

presently has none of the communication and co-ordination facilities (such as project planning 

and tracking, etc.) required to support teams of programmers working together on large software 

deve lopment efforts ( 'programming-in-the-large').

ARTTisan presents the developer with a hierarchy of notations, each of which plays a 

different role in the design process. Each layer in the hierarchy of notations represents a further 

refinement in the design. The initial layer is highly abstract, with each of the additional layers 

becoming more detailed. The design notations are tightly coupled, m that symbols in one of the 

notations may be related to symbols in one or more of the other layers. For example, a task in a 

process model may be further specified by a structure graph, and a procedure within the structure 

model may be further described by a state machine model. Each of these different notations has 

a separate tool associated with it, and the toolset is comprised of these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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A major goal of the toolset is to have the different design tools integrated Changes in 

one layer of the design should be automatically reflected in the other layers which are related.

One way to accomplish this goal is to share a common, oersistent data store. Previous 

generations of the ARTT toolset had used a filter-based approach to inter-tool communication. 

Data representing a design done in one of the tools would be massaged into the format expected 

by the next tool in the deJgn process. This waterfall approach made it difficult to co-ordinate 

revisions between the different tools: filters, unfortunately, rarely work in reverse. Using a 

common, shared data store allows the toolset to deal directly with changes made at each level. 

Enhancing the data store to allow concurrent, multi-user access would also be a first step towards 

an environment which supports a more team-based approach to software development.

The user interface for the toolset is based on the graphical, direct manipulation paradigm. 

Icons representing the symbols of the design notations are manipulated by the designer using a 

pointing device (mouse) and keyboard. In its present form, the toolset is written entirely in 

Objective-C, using SunView to handle the graphical interface. Although the toolset itself is 

implemented using an object-oriented language, it should be noted that the design notations 

supported by the toolset do not support the object-oriented methodology.

Tool integration is provided by highly inter-related, complex objects which implement the 

behaviour and maintain the relationships between the various toolset components. Figure 1.1 

illustrates some of the symbols used in the various design notations, while Figure 1.2 shows 

some of the classes which implement the toolset. The basic approach is to treat each design 

notation as a directed graph, possibly with cycles. This allows a common approach to the 

implementation of each of the different notations. The nodes and arcs of the graphs have a 

specific meaning and representation within their tool, and (oossibly) with the other tools in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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toolset as well. Each node and arc is modelled using three complex objects: its display object, 

which defines how it is viewed graphically and manipulated by the user; its logical object, which 

implements its behaviour and maintains its relationships with the other objects in the toolset; and 

its tool component object which binds the display and logical components together.

Viewed in this way, each tool may be implemented as a collection of nodes and arcs of a 

certain type, along with methods which enforce the rules and constraints of the design notation.

As can be seen in Figure 1.2, many of the objects are complex and highly structured, 

including a number which are comprised of collections of other objects. However, some of the 

objects in the toolset are also of the large, unstructured variety - such as graphics or text.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1.1: Design Notations

Layer 1: Task Diagram

Task f ^ —

Package

-‘f z

Task
Pool

y^Task

Layer 2: Yourdon Procedure Diagram

Procedure A

Procedure 0

Procedure B

Layer 3: State M achine Diagram
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Figure 1.2

Notational Conventions:
• Each line represents an Objective-C class definition: the class name is first, 

followed by a list of instance variables, enclosed in ()'s
• The inheritance hierarchy is shown by the indentations
• Instance variables enclosed in {}'s represent collections

System (name, processModel)
Tool ({nodes}, {arcs}, startingNode)

ProcessModel ({dataStores})
StructureModel ({Icp}, {dataStores})
S tateM achineM odel 

ToolComponent (displayObject, logicalObject)
N o d e

P r o c e s s N o d e
S t r u c t u r e N o d e
S M N o d e
Arc

ProcessArc

LogicalToolObject
Node ({toArcs}, {fromArcs}, label) 

ProcessNode ({entries}, {Icps})
Task (StructureModel)

TaskPool 
Package (StructureModel)

TaskGroup (processModel)
DataStore 
LCP (task)
StructureNode

SMProc (StateMachineModel)
Proc (fleshCode)

SMNode
States
FSMEntry
FSMReturn (returnValue)

TaskEntry
TaskEnd
SMFCall (SMProcedure)

Arc ({dependents}, toNode, fromNode, label) 
ProcessArc (toDataFlow, fromDataFlow) 

MessageArc ({ProcMsgArcs}) 
StructureArc 

ProcedureCall 
ProcMsgArc 

SMArc
StateTraruition
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1.3. Overview of the Research

This research has the following major goals:

• Provide a persistent object store for the ARTTisan toolset. This goal has a largely 

pragmatic motivation, since a persistent object store is required if the toolset is to be 

integrated.

• Evaluate the object-oriented approach to software engineering - both as a design 

methodology and as an implementation technique.

• Since the toolset is implemented using the Objective-C language, the object server must 

be consistent with the language and tightly integrated with it. Furthermore, since the 

toolset itself is being developed in parallel with the object server, the persistent object 

facility should be provided in a manner which is transparent to the toolset code.

• For the initial implementation, the object server is to be a single-user tool. However, the 

implementation must allow for future extensions to provide multi-user support.

These goals were met by the design and implementation of the persistent object server for 

Objective-C described in this thesis. The object server has been successfully integrated with a 

subset of the ARTTisan toolset. The major strength of this work are:

• It meets its primary goal of providing a persistent object store for the ARTTisan toolset. 

Objects may be stored and retrieved from the object base.

• The object server is transparent to the toolset code. For an example, persistent objects 

were provided to an existing subset of the toolset with only one line of code requiring 

modification. The toolset benefits from what is referred to as locational transparency - 

applications written using the object server do not have to know or care if an object is 

located in memory of disk at any point in time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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• The functionality provided by the object server has been provided with only minor 

changes to the Objective-C run-time kernel. No changes were required to the Objective- 

C compiler.

1.4. Outline of the Thesis

This thesis is organized as follows: Chapter Two introduces the reader to the basics of the 

object-oriented approach; and Chapter Three discusses the research into object-oriented 

databases. These two chapters may be omitted by a reader already familiar with these research 

areas. Chapter Four turns to the issues involved in implementing object-oriented database 

systems; Chapter Five discusses the design goals and issues for this work, and serves as an 

overview of the implementation; Chapter Six discusses the interface between the persistent 

object store and the Objective-C language; Chapter Seven presents the detailed design and 

implementation of a persistent object server for the Objective-C language; Chapter Eight 

presents the conclusions of the research and identifies areas for future research.
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2. Object-Oriented Concepts

2.1 . The Object-Oriented Approach

The basic notion of objects as they apply to computing is that they are abstractions of 

some entity, tangible or intangible, that is of interest to the designer. As such, they are a model of 

some thing that the designer wishes to simulate. One proposed definition of objects considers 

them to be "anything nameable" (Power and Weiss, 1988; p. 46). A more manageable definition 

of objects can be found in (Liskov, 1988).

Liskov's view of objects may be summarized by the equation:

Objects = Abstract Data Types + Inheritance 

In this view, objects are extensions of data abstractions created by the software designer. They 

combine the properties of both procedures and data, since they perform computation and save 

local state (Stefik and Bobrow, 1984). The key idea is that:

"Object-oriented programming is primarily a data abstraction technique, and much 
of its power derives from this. However, it elaborates this technique with the 
notion of "inheritance"....[used carefully] inheritance provides a useful addition to 
data abstraction." (Liskov, 1988: p. 18)

While objects can be understood in terms of data abstractions and inherits .ce, that alone 

is not enough to fully understand the entire object-oriented approach to software development. 

The key additional concept is the notion of computation via message-passing. This computational 

metaphor is used in two of the most popular object-oriented programming languages, Smalltalk 

(Goldberg and Robson, 1983) and Objective-C (Cox, 1986)

The following sections describe data abstraction and inheritance, as they relate to the 

object-oriented approach. In addition, the message-passing computational metaphor is 

presented
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structure code found in programs written in more traditional languages. The testing of data types 

is now under the control of the procedure calling mechanism, rather than the programmer.

2.2. Object-Oriented Programming Languages 

Smalltalk

Object-oriented programming finds its historical roots in the language Simula. However, it 

was with the Smalltalk-80 (Goldberg and Robson, 1983) system from Xerox's Palo Alto Research 

Center (PARC), that first brought the term ’object-oriented' to the attention of most software 

engineering researchers and practitioners. It was an important development in the computing 

field, and has had an enormous impact on the industry. The research that went into the Smalltalk 

system pioneered many concepts which are now considered standard: pointing devices, such as 

the now ubiquitous mouse, graphical user interfaces, and over-lapping windows all find their 

roots in the Smalltalk effort. It remains as perhaps the most consistently object-oriented 

programming language. As such, all of the characteristics of the object-oriented approach 

described in the previous section apply to the Smalltalk system.

Smalltalk is more than just a programming language. It is an entire environment built on 

the principles of the object-oriented methodology. There are four aspects of the Smalltalk 

environment (Rentsch, 1982): the programming language kernel, which comprises the Smalltalk 

language compiler and byte-code interpreter; a programming paradigm, which is the message- 

passing metaphor; a programming environment, which includes such tools as a debugger, 

editor and code browser, as well as a large class library; and the model-view-controller user 

interlace model, which includes a number of classes for creating graphical end user facilities. It is 

important to note that these are not discrete units, they are inter-mingled and overlapping.
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representation of the object within a set of operations. Users must use these operations to 

manipulate the object, rather than modifying the object’s representation directly. This allows the 

separation of the object's behaviour from its implementation. Users of the object are restricted to 

knowing what operations an object will suffer, without knowing how  they are performed. As a 

result, no object is dependent on the implementation details of other objects. This dramatically 

increases the robustness of the resulting system, since objects can be modified or re- 

implemented with minimal effect on other parts of the system. Encapsulation ensures that the 

code to perform a particular operation occurs only once - in the implementation of the type. This 

dramatically reduces code bulk, and simplifies change.

Software development using objects requires a fundamental shift in viewpoint. Objects 

are viewed entirely from the outside; as a result, when using an object, the developer is 

concerned with what it is, rather than how it is. Hentsch (Rentsch, 1982) notes that in Smalltalk, 

what is even more important is that the concept of getting 'inside' an object to examine or modify 

its state does not even exist in the language. Thus, objects are truly encapsulated in a purely 

object-oriented programming language.

Locality

One important side-effect of data abstraction and encapsulation is the property of locality. 

"Locality allows a program to be implemented, understood, or modified one module at a time." 

(Liskov, 1988; p. 20). Once an abstraction has been specified, its implementer and the 

implementers of other abstractions which use it, or are used by it, require minimal interaction. 

Everyone knows what to expect from the abstraction, which is the specified behaviour. This 

supports 'programming-in-the-large'. That is, it aids in the development of large, complex 

systems by teams of programmers. Developers can work on specific data types, without being
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concerned with the implementation strategies of others, since each can be understood in terms 

of its specification.

Locality also allows the system to be reasoned about (and hence, modified) one module 

at a time. The clear delineation of objects provided by locality allows the developer to concentrate 

on what must be done, rather than on whai must be left alone.

Two key features which have become identified with the object-criented approach result 

directly from the property of locality (Liskov, 1988). The first of these is fast prototyping, whereby 

a demonstratable system can be created quickly. This is due to the fact that objects can be initially 

implemented using simple representations and straightforward algorithms. As the system  

matures, the object implementations can become more sophisticated and robust.

A second, and closely related feature resulting from locality, is the support for program 

evolution. Requirements inevitably change over the life of a system; however, it is possible to 

structure the objects such that the effect of changes can be localized to their class.

Classes and Instances

In order for a programming language and/or environment to support data abstraction, 

there must exist facilities to add and use new data types. In Smalltalk and Objective-C, the primary 

tool for doing this is the class. Classes provide the designer with a tool to add new data types, to 

define their structure, and the operations that may be performed on them. A class is a description 

of one or more like objects, wh:~h are referred to as instances of the class. Structure is defined 

by specifying the instance and class variables of instances; behaviour is defined by specifying the 

methods that they can perform.
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A class identifies the common properties of its instances. The operations that objects will 

perform are defined for the class, but only have an effect upon instances. The process of creating 

a new instance of a class is referred to as instantiation.

All objects are unique instances of some class; which gives rise to the notion that all 

objects have the property of iaentity. Every object has a (possibly system-defined) name which 

remains constant regardless of any changes in the object's state.

UnflUistiQ_SuO£Od

One of the greatest advantages in using object-oriented languages is that tha da^a 

abstraction methodology is directly supported. There exists linguistic support for the definition of 

classes, for the binding of operations to data types, and for information hiding.

In Smalltalk, all data items are objects, including such primitive data abstractions as 

integers and characters. The result of making such primitives objects is a highly consistent 

programming environment: all items in the system are objects. Higher-level data abstractions (ie. 

user-defined objects) have exactly the same rights and privileges as system-provided ones. 

Furthermore, since all of the features of the language and its environment are implemented using 

objects, the usual dichotomy of system or language functions versus user-defined functions 

does not apply 

Corn posits Objects

Once objects are the sole tool of abstraction, it is natural to view objects as being 

aggregates of other objects. Thus a composite object must deal with its subcomponents using 

the operations which they, in turn, have provided. Eventually, these layers boil down to the 

system-implemented objects. This hierarchy of abstract data types is referred to as the
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aggregation/decomposition hierarchy. In the Artificial Intelligence area, this is also referred to as 

the part-of relationship.

Two important side-effects of viewing complex objects as aggregations of other objects

are:

• An object may be a sub-component of several objects simultaneously This structure- 

sharing is a powerful tool for modelling real-world entities, since different objects can 

share the concepts that they have in common. It should be noted that structure-sharing is 

greatly facilitated by the identity property of objects, since the references to objects are 

based on the identity of the object itself, rather than the value of some attribute.

• The subcomponents of an object may be other objects of arbitrary complexity. This is very 

different from the traditional approach where the attributes of a user-defined data type 

must be one of a small set of system-supplied data types (ie. integer, character). It is a 

powerful abstraction technique, one which allows the designer to easily and naturally 

layer both the design and the implementation of the objects in the system.

Objects which form collections of other objects are a special case of composite object, 

since their existence forms a relationship between their member objects. Objects which are 

members-of the same collection are said to share an association relationship.

Inheritance

Every class is a specialization of some other class, referred to as its superclass Each 

class, then, is said to inherit the structure and behaviour of its superclass This forms what is 

generally referred to as the class hierarchy. At the root of this hierarchy is the class Object, which 

defines the properties common to all objects in the system. New classes are defined as
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specializations of existing classes. This abstraction technique allows new concepts to be added 

quickly to the rystem as refinements to existing ones. It allows programmers to work in an 

incremental fashion. Since a class inherits the behaviour of its superclasses, new code must be 

written only for those aspects that make it unique, thus decreasing the amount of redundant 

information.

Different object-oriented languages support either single or multiple inheritance. In the 

former, a new class inherits its properties from a single super-class. In the latter, a new class may 

be defined by mixing the structure and behaviour of several classes. Thus, under single 

inheritance, classes are organized into a tree structure, while in multiple inheritance, classes are 

organized into a directed graph (often called a class lattice).

Inheritance, as described here, is one implementation of the data abstraction technique 

known as specialization/generalization. Generalization is the abstraction by which the common 

properties of several different classes are represented as a generic class. The constituent c'asses 

are said to be specializations of the generic class and inherit its properties. This abstraction 

establishes an is-a relationship between the objects. For example, Managers and Secretaries 

may be considered as specializations of Employees and would inherit such attributes as Name, 

Address and Salary from the higher level abstraction.

M essage Passing

Under the object-oriented approach, computation is performed by the sending of 

messages between objects. Processing activity takes place within the object itself, but only after 

it has been initiated by the receipt of a message. A message is a request for an object to perform 

some operation, the meaning of which is dependent upon the class of the object that receives it. 

Different classes will perform different actions given the same message. What is done upon the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

19

receipt of a message is based on the method (procedure) which the class implements as a 

response to that message. Resolution of what action will be performed, based on a given 

message, is typically performed at run-time.

F-'or most, programming in an object-oriented language wil' initially seem quite different.

All state is captured within objects, and the only way to accomplish computation is to use the 

messages to which the object will respond. Programs are created by passing messages to 

seemingly intelligent objects which perform some computation; they, in turn send their message 

requests to other objects to extract data or to have some additional computation performed. While 

proven effective, this paradigm is quite different from the more traditional procedural approach.

There exists a subtle difference between the semantics of a procedure call and a 

message request (Rentsch, 1982). Under the traditional imperative approach, there exists an 

assumption that the calling procedure is somehow ’in control' of the called procedure.

Conversely, a message is more accurately viewed as a request by the sender. The receiver object 

is totally responsible for the interpretation of the message and for 'doing the right thing'; 

hopefully, meeting the wishes of the sending object. Control is relinquished to the receiving 

object both conceptually and actually.

Bindings. Protocols and Polymorphism

All objects are instances of some class, and in this sense, all object-oriented languages 

are strongly typed. However, in both Smalltalk and Objective-C, the objects themselves are 

typed rather than the slots which hold the objects. For example, in most languages, when a 

variable is declared, its type is immediately disclosed to the compiler. In Smalltalk, when a variable1 

is declared, it is known only to be an object. As a result, the type of an object is unknown until
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run-time. Other object-oriented languages, such as C++, follow the more conventional approach 

and support the compile-time binding of objects to types.

The methods which implement operations specified by messages are bound to the 

object classes, rather than to some global name space. As a result, different object classes may 

have functions (methods) with the same name. Since the type of an object is typically bound at 

run-time (as in Smalltalk and Objective-C), which method a message is calling can only be 

established then. This is generally referred to as the late-binding of messages.

Message sends are quite different from conventional function or procedure calls. In the 

latter, the name of the function is bound to a location in memory which is named in the program's 

symbol table, and the location is specified at compile-time. A function call is made up of the name 

of the function, and the parameters being passed to it. When the function is called, the 

parameters are placed on the stack, and control is branched to the specified memory location. 

Since the symbol table is typically global, function names must be unique. Methods, on the 

other hand, do not have unique names. It requires a <class, message se le c to r pair to uniquely 

identify the memory location where the method implementation resides. The message selector is 

a character string which names the method. A message send is made up of the object which is 

receiving the message (the receiver), the message selector which identifies the operation 

desired, and the parameters being passed to the method. Finding the address which 

implements the desired operation requires a table lookup.

One interesting side effect of late-binding is that it simplifies the creation of an incremental 

compiler for a language that implements it. Since all procedure addresses are resolved at run­

time, a method may be re-compiled without impacting all of its callers (Duff, 1986). This furthers
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the goals of encapsulation and locality. On the other hand, late binding allows some errors in the 

code to remain undetected until run-time.

Late binding has some obvious performance penalties. Since the address of a function 

must be looked up at run-time, every procedure call implies some sort of searching. This is more 

expensive than simply branching to a pre-determined address, as is the case with traditional 

languages. This performance penalty is compounded by the fact that the message-passing 

paradigm results in a programming style which calls for a great many message sends. Lately, 

there has been a great deal of interest in performing more compile-time bindings. For example, in 

C++ (Stroustup), objects are strongly typed and as a result, messages may be resolved at 

compile time.

As a result of these binding mechanisms (ie. the static binding of methods to object 

classes and the run-time or dynamic binding of message sends to these methods), different 

object classes can share a message protocol. A protocol is a standardized set of messages used 

to implement a desired functionality. Two classes which implement the same set of messages are 

said to follow the same protocol.

"There is additional leverage for building systems when the protocols are 
standardized  This leverage comes from polymorphism. In general the term 
polymorphism means "having or assuming deferent forms," but in the context of 
object-oriented programming, it refers to the capability for different classes of 
objects to respond to exactly the same protocols. Protocols enable a program to 
treat uniformly objects that arise from different classes. Protocols extend the 
notion of modularity (reusable and modifiable pieces as enabled by data- 
abstracted subroutines) to polymorhpism  (interchangeable pieces as enabled by 
message sending).” (Stefik and Bobrow, 1984; p. 41)

Polymorphism then, allows different classes to perform similar operations, despite 

otherwise different representations. This is a powerful technique for the programmer to treat 

different classes in a uniform manner. Furthermore, it negates the need for much of the control
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structure code found in programs written in more traditional languages. The testing of data types 

is now under the control of the procedure calling mechanism, rather than the programmer.

2 .2 . Object-Oriented Programming Languages

Smalltalk

Object-oriented programming finds its historical roots in the language Simula. However, it 

was with the Smalltalk-80 (Goldberg and Robson, 1983) system from Xerox’s Palo Alto Research 

Center (PARC), that first brought the term 'object-oriented' to the attention of most software 

engineering researchers and practitioners. It was an important development in the computing 

field, and has had an enormous impact on the industry. The research that went into the Smalltalk 

system pioneered many concepts which are now considered standard: pointing devices, such as 

the now ubiquitous mouse, graphical user interfaces, and over-lapping windows all find their 

roots in the Smalltalk effort. It remains as perhaps the most consistently object-oriented 

programming language. As such, all of the characteristics of the object-oriented approach 

described in the previous section apply to the Smalltalk system.

Smalltalk is more than just a programming language. It is an entire environment built on 

the principles of the object-oriented methodology. There are four aspects of the Smalltalk 

environment (Rentsch, 1982): the programming language kernel, which comprises the Smalltalk 

language compiler and byte-code interpreter; a programming paradigm, which is the message- 

passing metaphor; a programming environment, which includes such tools as a debugger, 

editor and code browser, as well as a iange class library; and the model-view-controller user 

interlace model, which includes a number of classes for creating graphical end user facilities. It is 

important to note that these are not discrete units, they are inter-mingled and overlapping.
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Smalltalk is a 'pure' object-oriented language. As such, it is typified by the fallowing 

characteristics (Rentscb, 1982):

• uniformity of abstraction: All items in the Smalltalk system are objects, running the 

gamut from those usually considered to be primitives - such as integers and characters - 

to such esoteric data types as ProcessScheduler, SortedCollection and BitBlt. Even 

more interesting, the language itself is implemented using objects. Therefore, such 

things as contexts, classes and messages are also objects which may be manipulated. 

This uniformity makes it easier to implement tools such as debuggers to support the 

language and browsers to support additions and modi'.cations to the class hierarchy. 

Since everything is an object, there is no distinction between system supplied data types 

and those created by the programmer. There are no ’second-class citizens'. As a result, 

it is straightforward to implement new classes which are specializations or aggregations of 

the classes supplied with the Smalltalk image. This results in much of the time-savings 

typical of developing systems with Smalltalk.

• uniformity of computational metaphor: Smalltalk uses the message-passing  

metaphor. All processing results from the sending of messages between objects. This is 

applied consistently, to the point where arithmetic operators between integers are 

considered messages.

• uniformity of reference: In Smalltalk, the only way to reference an object is from the 

outside, using the messages to which it will respond to. There is no way to 'peek' inside 

an object to view or update its underlying data structures. At the same time, all variables 

use associative access; variable names refer to pointers, rather than to objects directly.
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The consistent application of this approach means that the 'dangling pointer' class of 

software bugs no longer becomes an issue.

The following is a list of interesting points and implementation details concerning the 

Smalltalk language. The reader should note that many of the details presented here will be 

referred to later in the research.

• The language is implemented using a byte-code interpreter. Programs are compiled to an 

intermediate language (as opposed to the machine language native to the hardware) 

comprised of single byte instruction codes. These instructions are then executed by a 

'virtual machine'. This approach results in a more efficient interpreter.

• Garbage collection is used to free the programmer from the burdens of memory 

management. This is considered a key feature in terms of the ease of applications 

development and systems reliability, although it can obviously have an impact on 

execution performance. It should be noted, however, that newer Smalltalk 

implementations use a scavenging garbage collection technique (described in Duff,

1986) which significantly reduces the performance penalty associated with garbage 

collection.

• As is implied by the use of garbage collection, Smalltalk manages its own memory. One 

key detail to note is that pointers to objects are not simple pointers. All references to the 

same object are >'ia a single 'object-oriented pointer' (OOP). As a result, it is possible to 

replace an object with an entirely new one and have all external references to it 

automatically updated. This is performed using a become message.
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• Objects can send messages to themselves by referring to one of two special variables 

known as self and super. Messages to self call the method implemented by the class of 

the object, or its superclasses, if no such method is defined.

Messages to super cause the message look up routine to start with the object's 

superclass. This allows behaviour to be specialized with a minimum of new code. For 

example, one common usage of super is when a subclass must perform some special 

processing to implement a message previously defined by one of its superclasses, 

vften, the best way to handle this is to implement the specialized behaviour in a new 

method, which then calls the superclass's routine to perform the more general process. 

This is done by sending a message to super.

• All of the source code above the virtual machine layer is available to be viewed and 

modified. This makes the system very malleable. A programmer can not only create the 

classes required for his own application, he can also modify all of the system classes 

provided with Smalltalk, if required.

• While the availability of source code is one of the benefits of Smalltalk, it also poses a 

problem. It is difficult to partition the Smalltalk environment in order to deliver a finished 

application. Imagine, if you will, the dangers involved in delivering an end-user 

application - say a banking system - where the tellers can view and modify not only the 

code that makes up their application, but the code for the compiler, graphics, disk 10, 

etc.. Fuithermore, it would be more space efficient if the classes that were not used by 

an application could be excluded from the image delivered to the users.

• Object persistence is handled by saving the heap to disk or other storage device. This 

makes it difficult to allow data to be shared between multiple users of an application.
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Objective-C

Objective-C (Cox) is a more recent language than Smalltalk. It is a hybrid language, in that 

it combines the efficiency and portability of the well-known C language with much of the 

expressive power of Smalltalk. Objective-C message sends can be mingled with ordinary C 

statements in the code; as well, ordinary C data structures can be mingled with objects. The 

language is implemented as a pre-processor to the C compiler, along with a run-time kernel 

written in assembler and Objective-C. It comes with an extensive class library (although not as 

large as Smalltalk's) which may be used to develop applications.

Objective-C supports the key concepts of the ooject-oriented methodology, such as 

classes, message-passing, polymorphism and inheritance. However, since it is based on C, it 

lacks much of the consistency that is the hallmark of Smalltalk. For example, the C-implemented 

data types such as pointers, integers, etc., are not objects, as they would be in Smalltalk.

Objects are added to C via defining one new data type, referred to as an id. Id's are first class 

types in Objective-C, in that any operation that can be applied to a character pointer in C, can be 

applied to an id (with, perhaps, some appropriate casting). Objects themselves are essentially C 

structures.

The following is a list of interesting points and implementation details concerning the 

Objective-C language.

• The language is compiled, rather than interpreted. However, in order to handle the late 

binding inherent in message passing, there is a run-time kernel. Messages are compiled 

to an ordinary C function call to the assembler function msg(), with the object, its class, 

the message selector, and the parameters to the message passed as parameters. Msg() 

looks up the function which implements the correct method and branches to it, leaving
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the method parameters on the stack. For added efficiency, the most recently used 

methods are cached.

• There is no garbage collection, so memory management is left in the hands of the 

developer. The memory required for objects is allocated from the heap using the an 

Objective-C protocol which ultimately access the regular C memory routines such as 

alloc() and free(). As a result, dangling pointer bugs can occur when objects are 

deallocated.

• References to objects are ordinary C pointers, not OOP's, as in Smalltalk. This means 

that multiple references to objects cannot be updated in a straightforward manner. This is 

an additional source of dangling pointer bugs.

• Objects may be saved to disk. Complex objects will result in the saving of all objects 

reachable from the root.
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3. Object-Oriented Database Management Systems

3.1 . Introduction to Database Management Systems

Database management systems (DBMS) are a well known topic in computer science and 

engineering. Their importance can be seen by the fact that they exist for virtually all types of 

computers, large and small, and by the amount of research interest dedicated to them. 

Databases are distinct from most programming environments in that they deal with persistent 

data. Persistence means that the data is stored in some non-volatile storage media (typically 

disk), in contrast with other environments where all data structures are in memory. Once data is 

persistent, it is possible to separate it from individual applications. This gives rise to an important 

side-effect of persistence: it allows the sharing of data between applications and users. 

Furthermore, as will be discussed further below, this sharing can be sequential or concurrent.

Not only are DBMS's concerned with the storage of shared, persistent data, they are 

designed to efficiently access large quantities of data. While any operating system will deal with 

persistent data through its file system, few do so effectively once there is a large amount of data. 

The difference is that databases typically provide some mechanism for the direct access and 

updating of data stored in files.

In addition to the efficient access of large amounts of persistent data, databases have a 

number of common features. These include the support of data models and data abstraction, 

language support, access control and resiliency.

Data Models and Abstractions

Database management systems will provide support for at least one data model, which 

provides a mathematical abstraction with which to view the data. For example, the relational data
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model provides a set-theoretic view of data, with a well understood set of mathematical operations 

to manipulate that data; the network model is based on directed graphs.

Date (Date, 1983) defines data models to consist of the following three components:

• a collection of object types;

• a collection of operators;

• a collection of general integrity rules.

The object types provide the basic units of the data model; databases built from a particular data 

model will consist of objects of strictly those types. The operators provide a mechanism by which 

those objects may be accessed and manipulated. The integrity rules are a set of general 

constraints to which databases using the data model must conform; for example, relational tables 

must be normalized.

In addition to a data model, modern database systems will generally support some notion 

of abstraction levels. That is, a number of layers of abstraction between the bytes being written to 

the disk and the information being manipulated by the users. The most common model of 

abstraction levels has three layers: physical, conceptual and view. The physical database level is 

concerned with the files and indices that actually make up the storage structures of the database 

The conceptual database level defines the structures of the physical level such that they are 

meaningful in some way to the users of the system. In order to do this, DBMS's supply a data 

definition language (DDL), which allows the definition of the data in terms o< some data model, 

and some degree of control over the implementation provided by the physical level. It is also 

common for the conceptual schema to be first defined in terms of some sort of higher level 

abstraction technique (such as a semantic data model, described below), and then translated to 

the data model supported by the target DBMS. The view (or subscheme) level provides a
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mechanism to partition the conceptual database into views which are meaningful to a particular 

user group. For example, the personnel department and the telephone operators would want 

very different views of an employees database. Views allow the database designer to create 

objects which are more complex than those defined in the conceptual schema.

Levels of abstraction give rise to another commonly referred to concept in databases, 

data independence. There are two types of data independence: physical and logical. Physical 

independence implies that the physical schema may be modified with minimum impact on the 

conceptual or view levels. This results from the fact that applications which access the database 

do so via the DBMS; this level of indirection allows the underlying file structures of the database 

to be modified without resulting in program changes. Logical independence implies, in a similar 

fashion, that changes may be made to the conceptual schema with minimal impact on the 

subschema level.

Language Support

High-level language support for data definition, manipulation and access are typically 

provided by database systems. In different systems, each of these three facilities m aybe  

provided by a separate language, by one language or by some combination thereof.

Furthermore, some database systems are intended to be used with a host language such as 

COBOL, PL/1 or C.

{Ullman, 1988) claims that one of the key developments in modern database technology 

is the integration of the host and data manipulation languages. In other words, negating the need 

for some host language to write the application in. For example, even such recent database 

access languages such as SQL require a host language like COBOL to provide the flow of control 

logic needed to create a complete system. SQL statements embedded in the program interact
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with the database, while the host language provides the contra1 structures, interacts with the 

user and performs many of the data manipulations in program memory. The key problem with 

using separate languages is that impedance mismatch may result (Zaniolo, etal). This occurs 

when the host language and database language are based on different notions of computation 

(ie. an imperative language mixed with a declarative query language) or have different typing 

systems.

Security and Integrity

Access control, security and data integrity facilities are also common in database 

systems. The first two are concerned with controlling access to the data to ensure that it is not 

corrupted by unintended or malicious use. Note that the view level of data abstraction is one 

commonly used technique to provide access control; users are restricted to manipulate only 

those views for which they are authorized. Data integrity facilities ensure that the values being 

stored are reasonable. For example, a field to store a person's age would not be expected to fall 

outside the range of 0 to 150.

Concurrency and Transactions

Concurrent access to the data by multiple users, n either a time-sharing or truly 

distributed environment, is one of the most important functions of database management 

systems. In fact, the efficient sharing of data between multiple users is one of the main 

motivations for using DBMS's to store and manipulate data, as opposed to ordinary file systems 

Facilities to support multi-user access are typically implemented in terms of locking protocols, 

schedulers and transaction managers. However they are implemented, concurrency schemes 

are intended to ensure tha: concurrent transactions performed by the users are serialized. That 

is, that they appear to have been performed in some sequential fashion, despite having been
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interleaved wherever possible. Serialization of transactions is critical because it ensures that each 

user of the database deals with a consistent view of the data. Without serialization, it is trivial to 

construct examples of multi-user database transactions which have not been serialized whose 

actions interfere with each other in such a way as to leave the database in an inconsistent state.

Transactions are user operations on the database which are to be applied atomically; 

either all of the operations within the body of a transaction will be committed to the database, or 

none will. Concurrency schemes common in today’s DBMS's typically assume each transaction to 

be quite short - a second or two, at most, and more normally some fraction of a second. As a 

result, it is generally assumed that a transaction can be suspended momentarily (while waiting for 

a lock to be freed, for example) in order to ensure that serialization has been met.

Database locking is done to ensure that only one user may have access to a database 

entity at any given moment. One of the most commonly used locking protocols is known as two- 

phase locking. Date defines this protocol in terms of the following theorem (Date, 1983; p. 

102 ):

"If all transactions obey the following rules:

one: before operating on any object the transaction first acquires a lock on that 
object: and

two: after releasing a lock the transaction never acquires any more locks;

then all interleaved executions of those transactions are serializable."

All of the locks required by a transactions are done before any items are unlocked; once the first 

item is unlocked, no more locks may be acquired by the transaction.

Since transactions may be made to wait until other transactions release portions of the 

database, the DBMS is also responsible for the detection and resolution of transaction deadlock. 

Deadlock occurs when two or more transactions are suspended while each is waiting for the other
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to release data. For example, transaction A holds a lock on record X and is waiting for transaction 

B to release its lock on record Y. Simultaneously, transaction B is waiting for A to release its lock 

on record X. This situation could remain unresolved forever. It is the database equivalent of the 

infinite loop.

In summary, database transactions have the following characteristics:

Duration: Database transactions are of short duration. Typically, they are designed so 

that they last for a few seconds at most, to minimize the possibility that one user is forced 

to wait for data being accessed by another. For example, interaction with the user is 

usually not contained within the bounds of a transaction. This is to ensure that tiie data is 

not locked while the user is viewing it on the screen. For example, a program which 

interacts with both the user and the database could have the following form:

user interaction 1 
start transaction

database update 1 
if error tnen

abort transaction

database update n 
if error then

abort transaction 
commit transaction 
user interaction 2

Consistency: Database transactions are the primary method of maintaining database 

consistency. Implicit in this statement is the assumption that any transaction that commits 

will leave the database in a consistent state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

34

Volume: Database transactions touch fairly small amounts of data (or at least only a few 

tables), Large reports, data loads and bulk changes are typically done off-line to minimize 

their impact on user response-time.

Locking: If a record that the transaction wants to access is locked by another user, the 

transaction is typically put into a wait state until that lock is released; multiple transactions 

waiting on a record are queued. Note that this implementation strategy is based on the 

assumption that transactions are short in duration (otherwise users would be waiting for an 

unacceptable length of time).

Concurrency: In a typical database application, there are many users and hence, may 

transactions executing concurrently. There is a high orobability that the many concurrent 

transactions may result in deadlocks occurring. Therefore, deadlocks should be 

detected and resolved automatically by the DBMS - usually by causing one of the 

offending transactions to abort.

Much of the function of a database management system therefore, is to provide some support for 

the correct and efficient access to the stored data in a multi-user environment.

Resiliency

Resiliency in the face of some unexpected event, such as abnc-mal program termination 

or media failure is also one of the tasks of a DBMS. Databases are expected to ensure that their 

integrity is maintained at all times, and when that is impossible, to provide backup and recovery 

mechanisms to return to a consistent state. It should be apparent that transactions play an 

important role in the ensuring the integrity of the database, since they are guaranteed to either 

commit or tail atomically.
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3 .2 . The Motivation for Object-Oriented Databases

Before describing what is meant by 'object-oriented database management systems', let 

us first address the issue of why they are interesting. In other words, what is unsatisfactory about 

the present database technology that is driving researchers to look in new directions.

Why Relations Are Not Enough

The present state-of-the-art in database technology are those systems which support the 

relational data model. Relational DBMS's have been well-accepted in the traditional application 

domains of databases, such as business and accounting. There are a number of commercially 

available relational database systems. Although these systems may differ in implementation 

details, etc., they all share the same view of data. Recall that a data model consists of a set of 

object types, a  set of operations on those types and a set of general constraints. Given this 

definition, the relational model may be quickly summarized as (Ullman, 1988), (Date, 1983):

• All objects are tuples, or members of a relation. Relations are a concept from set theory

and can be defined as a "subset of the Cartesian product of a list of domains a domain

is simply a set of values, not unlike a data type." (Ul.’man, 1988; p. 43) Relations may be 

viewed intuitively as tables, where the rows are the tuples (instances) and the columns 

are the attributes (values drawn from ihe domains of the relation) of those tuples.

• There is a fixed number of operations on relations, based on either the relational calculus 

or the relational algebra, which are logically equivalent. For example, relational algebra 

includes the operations of union, difference, selection, projection, and Cartesian 

product. The result of any of these operations on a relation is another relation, which 

then may be used as an operand to another operation. These operators have the 

property of orthogonality; that is, none may be expressed as a formula consisting of the
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others. This, in turn, leads to the conciseness of languages based on the relational 

model.

• Relations, which form the conceptual schema, are constrained to be normalized. 

Normalization provides an algorithmic way to construct relations from the objects to be 

modelled by the database, such that each entity may be uniquely identified by a primary 

key, further, normalization avoids redundancy of data, which can lead to update 

anomalies. The relational model is value-oriented in that it is the attributes of a tuple 

which uniquely identify it, rather than some identity property.

Relational DBMS's also typically provide some mechanism to construct views. Views 

provide a mechanism to model complex objects which are not necessarily fully normalized.

"A view is defined in a relational model as a query over the base relations, and 
perhaps also over other views. Current implementations do not materialize views, 
but transform user operations on views into operations over the base data."
(Wieuerhold, 1986; p. 37)

Care must be taken when manipulating database views. Although they are themselves relations.

they are not necessarily normalized. As a result, operations performed on them may result in

update anomalies.

The relational model has a number of important strengths, as noted by (Ullman, 1988), 

(Tsichritzis and Lochovsky, 1982), (Date, 1983) and others.

• It provides a simple and intuitive tabular view of data. This is particularly useful in 

applications, such as accounting, where tne data naturally fits this mold.

• As noted above, the results of operations on rel?fions are, in turn, relations.
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• It supports concise, yet powerful, declarative languages for operating on data. This is 

partly due to the previous point, since operations can be nested easily, and also the 

orthogonality of the relational operators.

• It supports the notions of data abstraction and data independence.

If relational DBMS's are performing satisfactorily in many application areas, why is there a 

need for new database technologies? First and foremost, databases are being called on to 

support new and very different applications in such areas as Computer Aided Design, Computer 

Aided Manufacturing (CAD/CAM), Office Automation, Artificial Intelligence and Computer Aided 

Software Engineering (CASE). These applications are characterized as having:

• large amounts of data of diverse types, including both large, unstructured objects such 

as graphics and text, and complex, highly structured objects such as CAD designs;

• complex end-user interface requirements; and

• a high rate of change in the application.

Many of ihese applications are being modelled and understood while the software that 

implements them is being developed. Contrast this with the more traditional application domains 

of compu^rs, where the systems being developed have often been understood and performed 

manually for many years. As a result, the features of object-oriented programming such as rapid 

prototyping, localization of change and inheritance make it better suited to these domains.

A number of researchers (Rumbaugh, 1987), (Zaniolo, et al), have commented on the 

general unsuitability of relational database technology to deal with these new application areas. 

Although the relational model is an elegant, mathematically-based data abstraction, it provides
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only one level of structure (the relation), and is poor at representing both highly structured, 

complex objects and unstructured objects. This is largely the result of the following factors.

• Complex objects must be represented by tuples spread over a number of relations, rather 

than by some direct representation. These tuples must be joined using relational 

operators to form the entire object. As a result, much of the representation of complex 

objects resides in the application code, rather than in the schema; further, it is difficult to 

manipulate complex objects as single entities. While the view mechanism, supported by 

many relational DBMS's provides a way to represent these objects in a more natural 

manner, the updating of views may result in update anomalies.

• The model is restncted to a small set of primitive data types - typically integers, characters 

and dates - and there is no way to extend this set.

• The lack of the notion of object identity often forces the creation of arbitrary key values in 

order to invent uniqueness. The inability of relational databases to handle data structures 

which are recursive to some arbitrary depth stems from the lack of object identity. Identity 

is also required for the structure sharing required for many knowledge-intensive 

applications. Structure sharing supports referential transparency; that is, any change in 

an object is automatically made available to all of the objects that refer to it. This is not the 

case wi*h relational databases, where a change in a tuple's key is not reflected in the 

entities that share it (Zaniolo, etal). Rumbaugh (Rumbaugh, 1987) attributes many of 

the problems of normalization (ie. concern about update anomalies, referential integrity 

and redundant data) to the value-orientation of the model, and the refusal to admit the 

property of identity.
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• The relational model's reliance on the record construct and a tabular view of data makes it 

unsuitable for representing unstructured objects.

Ullman (Ullman, 1988) argues that the value-orientation of the relational approach is, in fact, one 

of its strengths. He bases this argument on the unsupported claim that it is impossible to define a 

declarative language for an identity-based data model. However, this argument is ultimately 

counter-intuitive; identity is one of the key concepts in modelling the real world. For example, 

picture two brand new basketballs. They are the same in every way - colour, shape, 

manufacturer, etc.. But as even a child can tell you, they are different basketballs. In other 

words, they have the property of identity.

It should be noted that there have been a number of extensions to the relational model 

which have been proposed by researchers which address many of the issues raised above. (For 

example, the RM/T model, as described in (Date, 1983)).

Database Issues Addressed by the Object-Oriented Approach

From the previous section, it can be seen that the object-oriented approach promises a 

better approach to modelling complex real-world entities than do conventional methodologies. 

The following describe a number of other issues in database research and how they could be 

addressed by object-oriented database management systems.

Conceptual Modelling

There has been a great deal of interest by database researchers in ways to improve the 

methodology by which the conceptual schemas are designed. The goal is to capture more of the 

semantics of the problem domain in the schema. Traditional data modelling techniques capture 

only the static (structural) semantics of the application. This limits their usefulness in specification
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and design since only part of the pioblem can be adequately described, as the behaviour of the 

system is not addressed. This research area is broadly referred to as conceptual modelling.

The modelling techniques which have come out of this area are known as semantic data 

models. To a large degree, this area may be viewed as an attempt to combine advances in the 

areas of databases, programming languages and artificial intelligence. It must be stressed that 

conceptual modelling is not an implementation technique. Rather, it is a toolbox of concepts, 

notations and abstraction techniques which improve the specification and design of database 

schemas and transactions (ie. both structure and behaviour). Generally, it is assumed that the 

actual implementation of the database will be done using a conventional relational DBMS.

One of the ideas advanced by conceptual modelling is that much of the semantics of an 

application can be described using a number of abstraction hierarchies. The classificatron- 

instantiation hierarchy is common to virtually all database systems and languages. For example, 

this abstraction exists in relational systems since a relation defines the contents and meanings of 

the tuples actually stored in the database. This abstraction allows the grouping of like objects into 

classes; and an instance-of relationship is said to exist between the objects and their class (ie. 

{123, 'Fred'} could be an instance-of the relation Employees). The specialization-generalization 

hierarchy supports the notion that the common properties of several different classes may be 

represented by a generic class. The constituent classes are said to be specializations of the 

generic class and inherit its properties. This abstraction establishes an is-a relationship between 

the objects (ie. Managers and Secretaries could be specializations of Employees). The 

aggregation-decomposition hierarchy forms a part-of relationship between between objects 

which have been aggregated into some higher level object (ie. Name and Address could form 

part-of Employees). The association abstraction groups objects into collections. Objects are
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related by association if they may be viewed as being part of a higher level collection object. This 

establishes a member-of relationship between the collection object and its members.

Conceptual modelling also brought the notion of encapsulation to database design. In 

other words, the behaviour of the objects being manipulated by the database should also be 

somehow captured by the schema; and further, that it is easier to maintain the integrity of those 

objects if all access to them was via operations (transactions in database parlance) that they 

defined and implemented.

Conceptual modelling, therefore, introduced the object-oriented design methodology 

to the database community. Of course, once these design techniques became generally 

accepted, the next step was to provide object-oriented DBMS's for their implementation.

■YiffiflS

Views were described briefly above, however, since they provide a mechanism which 

has been proposed as a method for the representation of complex objects by relational databases 

(Wiederhold, 1986), they warrant further discussion.

Views provide an abstraction whereby information on the database is tailored to meet the 

needs of a single class of users. There exists two types of views; partitions and aggregations.

Partitions: This class of views restrict and (perhaps) modify the database schema to meet 

the needs of a certain class of users. Partitions may restrict which tables and/or which 

fields a user may see in the database. There may also exist facilities to allow the renaming 

and reordering of fields within tables. Partition views are often used to control access to 

the database.
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Aggregations: This type of view is often described as a 'stored join'. The goal of 

aggregation views is to create a complex object from the relations in the database that 

more closely follows the users’ conceptual view of the data. For example, in a CAD  

database, a printed circuit board may be represented in a number of different normalized 

relations; however, the user will want to view and manipulate the complex object as a 

whole. Note that although the relations that make up a view of this type will be normalized, 

there is no restriction that the view itself be so.

Aggregation views are generally considered a complex entity with poorly understood semantics in 

the database literature. However, views are really just complex objects. As such, their 

implementation would be a natural part of a OODBMS.

One of the reasons why views are considered complex is that the semantics of updates to 

them in terms of their underlying implementation is not always clear. The maintenance of 

database integrity in the face of view updates is also considered an issue. Furtado and Casanova 

(Furtado and Casanova, 1985) note that there are two basic approaches to handling the view 

update problem. The first is to treat the view as an abstract data type, including a definition of the 

allowable operations. In other words, treat the view as a complex object. The second is to define 

generalized procedures which take a view, the desired update and the current database state as 

operands and attempt to construct a satisfactory update to the underlying database. They note 

that treating views as A D Ts has the following advantages:

• Certain updates are no longer ambiguous when they are not treated as straightforward 

applications of single tuple insertion, deletion or replacement.

• Ambiguity is avoided since the developer can make arbitrary decisions in the 

implementing the view operations.
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• Specific view manipulation routines will be more user-friendly than the use of some 

general-purpose view update language.

• Constraints are automatically enforced if view operations are restricted to those 

implemented for the view abstract data type.

In terms of the object-oriented approach to views, the above holds, with the following 

extensions.

• Since the components of a complex object (view) are themselves objects, the view is not 

responsible for ensuring their integrity. As objects, they are also capable of intelligent 

behaviour and are ultimately responsible for maintaining their own constraints. This 

makes it more straightforward to implement view abstractions using an object-oriented 

approach.

• Inheritance is an integral part of the object-oriented paradigm. Therefore, it would be 

straightforward to define specializations of views. These would meet the need for 

partition views described above, especially if multiple inheritance is allows by the system

Objects, therefore, are the most suitable implementation vehicle for modelling complex entities.

Constraints

More advanced database systems supply facilities for the maintenance of constraints 

defined over the database. Constraints put bounds on what behaviour is acceptable for a certain 

class of entities or attributes of entities; they also put restrictions on the set of allowable states 

that the database may be in.

Three types of constraints exists (Brodie, 1984):
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Inherent: These are constraints which are the result of the data model which the application is 

based on. For example, in under the relational model, there exists the constraint that relations 

must be normalized.

Inherent constraints are not necessarily a good thing. Each of the traditional data models 

(hierarchial. network and relational), however, come with their own set of such constraints. While 

they enforce a certain rigor in the design of databases, they also ultimately restrict what it is 

capable of modelling.

Explicit: These are constraints which have been specified by the application designer or 

implementer. The earlier example, where age is restricted to be between 0 and i 50 is such a 

constraint. How explicit constraints are most efficiently implemented is an active research area. 

One presently popular approach is to express the constraints as predicates in some first Harder 

logic language.

Explicit constraints may be further divided into static and dynamic constraints. Static 

cons'raints include such things as data typing and range checking. Dynamic constraints, on the 

other hand, are concerned with specifying what state transitions are acceptable, given the 

present state of the database. They are most commonly expressed i i  terms of pre and post­

conditions for database transactions.

Implicit: Implicit constraints are those which are the result of interaction between inherent and 

explicit constraints.

One of the goals in building object-oriented database systems is to minimize the inherent 

constraints, while at the same time allowing explicit constraints (both static and dynamic) to be 

concisely and correctly expressed. Static constraints could be expressed as predicates over the
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object classes in the database. The real advantage to the object-oriented approach, however, 

lies in the specification of dynamic constraints.

In traditional database implementations, dynamic constraints are typically contained in 

validation rules in the application programs that access the database. These programs have 

unrestricted access to all of the entities available to them in the schema. Each of them is 

responsible for ensuring that they do not perform some corrupt action on the database. Since 

objects support encapsulation, the only way to access the entities in the database is via the 

operations that they make available. Therefore, each object class is responsi Ie for the integrity 

of its instances. The creation of complex interactions becomes a more straightforward exercise 

when the programmer can rely on each of the database objects to maintain then jw n integrity.

Closely related to constraints is the notion of active databases. The concept implies that 

the database schema should contain triggers or demons which automatically execute under 

certain conditions. For example, an attribute of an entity can have a certain demon associated 

with it which executes whenever an instance in updated. Active schemas provide a facility to 

maintain constraints and to also perform certain 'housekeeping' tasks for the database.

Underlying the concept of active databases is one key assumption- the data in the 

database is passive. The concept does not apply per se to object-oriented databases since this 

assumption does not hold. In an object oase, the only way to modify an object is to use one of 

the methods defined for its class. Integrity checks and/or housekeeping jobs may be included in 

these programs. As a result, OODBMS's are active by definition.

Meta-Data Management

Database management systems provide some mechanism for the management of meta­

data. Meta-data refers to 'data about the data' being stored and mat c  u  3d in the system in
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conventional systems, the data definition language (DDL) and the data manipulation language 

(D M l) are distinct. More recent tools treat these in a consistent manner, with the advantage that 

the meta data may be accessed, and in some cases manipulated, at run-time.

The traditional approach to meta-data management is to first design the schema and then 

populate the database. The schema is viewed as largely fixed, and applications cannot typically 

access or modify the information held there. Its purpose is to define the structure of new 

instances and to keep track of existing ones. This approach is ineffective in areas such as CAD, 

which have a high rate of change. In these environments, the DBMS must supply the users the 

ability to add, modify and remove classes in the database schema. The more conventional view 

of schema design and then database implementation is giving way to a cyclical approach to 

database design, definition and use.

In addition, as (Zaniolo, et al) have pointed out, the main source of knowledge for a 

DBMS lies in its meta-data. It should be available to be treated in a manner similar to regular data.

As they put if

"In the meta-data lies the knowledge" (Zaniolo, et al; p. 59)

An object-oriented database management system should supply the users with 

mechanisms to deal with data and meta-data in a consistent manner. The most straightforward way 

to do this is to represent the schema itself as objects. Encapsulation will ensure that users cannot 

access the underlying implementation of the DBMS system objects; furthermore, the operations 

defined for the classes implementing the schema objects will ensure that any constraints will be 

satisfied, thus maintaining the integrity of the system. But since it is composed of objects, users 

will be able to manipulate the schema, just like any other class of objects. This is analogous to the 

class description mechanism in Smalltalk.
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Knowledge Bases

No discussion about the current research in object-oriented databases would be 

complete without addressing the area of Knowledge Bases (KB). They represent another, not 

entirely separate, stream of database research.

KB’s address many of the same issues dealt with by object bases by taking a knowledge- 

based approach. Instead of viewing the semantics of an application as being described by the 

combination of structure and behaviour of the objects involved, KB's model the real world using 

facts and rules, along with some sort of deductive reasoning mechanism. The facts are stored as 

tuples in a relational database and the rules are expressed in a declarative language, typically 

based on some first-order predicate logic. The reasoning mechanism provides a way to deduce 

truths about the world being modelled by the KB, without the necessity that they be expressly 

stored as a tuple, as in conventional databases.

From a programming language perspective, knowledge bases versus object bases may 

be viewed as Prolog versus Smalltalk. And in a manner similar to programmers arguing for their 

most emotionally favourite language, you can find those who argue for either object or 

knowledge bases as being superior1. In fact, they represent two different and complementary 

methodologies for modelling the real world.

3.3 . Object-Orier  ̂ Databases

What then, constitutes an object-oriented database management system (OODBMS)9 it 

should be apparent from the previous discussions on the object-oriented approach and on 

databases, that many of the data abstraction issues in databases have been resolved by the

1 For an example of such an argument, see Ullman, 1988, pgs 28-29
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object-onented approach. For example, class ana inheritance mechanisms support the 

abstraction hierarchies of classification, specialization and aggregation; and the binding of 

methods to classes supports the notion of encapsulation. The problem then, is to apply the 

concepts inherent in the object-oriented methodology to the design and implementation of 

databases.

This section first describes the two viewpoints taken by various researchers interested in 

OODBMS's. It then turns to the key features which earn a database system the 'object-oriented' 

label, including: support for object identity and complex objects, encapsulation, extensible type 

systems and inheritance. We will define an object-oriented database system  to be any DBMS  

which supports, as a minimum, those inter-related features. However, keep in mind that object 

bases first and foremost provide the functionality basic to any database, such as: concurrent 

access to large amounts of persistent data, language support, backup and recovery mechanisms 

and access control.

Two Perspectives in Object-Oriented Databases

Object-oriented databases are a relatively new research area, and much of the interest in 

it is coming from two, quite disparate, groups. The first group is the database community. From 

their viewpoint, the object-oriented approach provides powerful new ways to abstract data and to 

implement databases which support complex applications. Much of their emphasis is on efficient 

access methods, indexing schemes and concurrency schemes. The second group is made up 

of researchers in the programming languages area. From their viewpoint, OODBMS's provide a 

mechanism to efficiently share and access persistent data. Their interests lie in such areas as the 

sharing of objects in different memory spaces, remote message sends and distributed garbage 

collection. The perceived issues and proposed solutions advanced by these two groups are
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quite different (for an excellent discussion on the differences between these two camps, see 

(Bloom and Zdonik, 1987)). The first constructs a data model to support the object-oriented 

paradigm and then defines data definition and manipulation languages in order to implement a 

complete OODBMS. The second typically takes a programming language (such as Smalltalk) and 

devises ways to extend it to handle persistent data. These different viewpoints is not surprising, 

given that the database community traditionally concentrated on the structure of systems, while 

the programming language community concentrated on process.

There are a number of possible ways to connect object-oriented programming languages 

(OOPL's) with object-oriented databases. These include (Peter Lyngbaek, in Power and Weiss, 

1988):

• embed database languages (such as embedded SQL) into an object-oriented language; 

this approach works well for sharing and querying information, but is poor in terms of 

flexibility and transparency;

• export certain database constructs, but use the OOPL to write the methods which access 

the database; this is more flexible, but makes it more difficult to optimize queries;

• make persistence completely transparent, which is obviously good for transparency, but 

makes it more difficult to share and query data.

Object Identity and Complex Objects

As discussed in the previous chapter, objects have the property of identity. That is, an 

object can be distinguished from all others, regardless of its attributes Recall from Chapter Two 

that this implies that objects retain their identity regardless of any changes in their state (Ullman, 

1988) considers this to be the definitive feature of an object-oriented database system, to the
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point where he has given the DBTG network and the IMS hierarchial models the object-oriented 

label, simply because they support object identity.

Object identity is an important concept for a number of reasons, including the following:

• Object identity supports the definition and representation of complex objects which 

have, as attributes, other objects of arbitrary complexity. In addition, composite objects, 

such as collections, may be supported. The members of these composite objects may 

be of arbitrary types, as opposed to most other data models where collections must be 

homogeneous.

• It allows the representation of objects for which little or nothing is known. This is an 

important feature in applications such as CASE, where it is important to capture data that 

is incomplete.

• Any or all of the attributes of an object may be changed without affecting the fact that it 

remains the same object.

• Related to complex objects, identity allows a high degree of structure sharing. Objects 

which share a piece of knowledge do so directly. This feature reduces the update 

anomalies as per the relational model.

• Finally, object identity is intuitive. Recall the basketball example discussed in the 

previous section.

Encapsulation

For a DBMS to be considered object-oriented, it must provide support for the notion of 

encapsulation. Recall that encapsulation is an implementation hiding technique. Instances of a 

data are accessed and manipulated via a set of operations supplied by their class, rather than 

have their representation dealt with directly. As a result, the behaviour of an object is packaged
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with its structure. This is done by binding operations to types (classes), which define the 

behaviour of their instances.

Encapsulation provides a mechanism to model behaviour, since the operations allowed 

by a class are defined to the database system as well. All of the programs which wish to 

manipulate instances of a certain type must use the operations that they provide. Applications 

become more concise, since the code to perform a certain operation occurs only once; they 

become more reliable, since there is a higher degree of code sharing and reuse; th9y cope with 

change better, since the impact of a modification can be localized to (typically) a few classes; and 

the integrity of the data increases, since constraints on the objects can be reflected in their 

operations. As a result, encapsulation aids in the development of large, complex systems. 

Extensible Type Systems

Extensible type systems refer to the ability to define new data types for use by the 

database management system. A data type includes both a representation and a set of allowable 

operations. In a conventional DBMS, developers are restricted to using a fixed set of pre-detined 

types, such as characters, integers, etc. and a small set of operations on those data types. The 

goal of an extensible type system, is to allow the creation of new types which are 

indistinguishable from the system-supplied ones; and further, to be able to use these user- 

defined types in the creation of even more new types. This allows the nesting of structure to 

arbitrary levels.

Relational DBMS's allow the specification of new relations in the schema. In an object- 

oriented database, the class construct is used. Classes are similar to schemas in that they define 

the representation of a database entity. However, they extend this with the ability to use other, 

possibly user-defined, classes in their definition and by packaging operations with structure
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Classes provide the physical data independence of relational DBMS's without limiting the 

expressiveness of the data model.

(Fishman, etal, 1987) lists the following capabilities as necessary to support an 

extensible typing system.

• There must be a mechanism for declaring new data types. Specifically, filters are required 

to provide some translation between the new type’s internal representation and the 

representation viewed and manipulated by the user.

• There must be a way to define operations on new types. This would typically presume the 

existence of some sort of language support.

• There must exist a way to implement new database access methods for the newly created 

types.

Inheritance

In addition to providing a mechanism for adding user-defined classes to the system, an 

object-oriented DBMS should support inheritance - either single or multiple. Recall that objects 

were defined as being abstract data types, plus inheritance.
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4. Implementing Object-Oriented Databases

4 .1 . Implementation Issues for Object-Oriented Databases

The following sections describe issues concerning the implementation of object-oriented 

databases. Much of the information contained in this section was derived from (Stein and Maier, 

1988), and from the transcribed discussions contained in (Power and Weiss, 1988).

Object-oriented database systems are still primarily a research field, with many unsolved 

questions, as the following quote illustrates.

"...the field of object-oriented databases is taking off almost exponentially 
as a strong market-driven activity. Over 25 efforts are currently underway to 
implement OODB systems. There are many difficult research problems that need 
to be solved: object-oriented data models, management of composite objects,
OODB programming languages, distributed transaction management on abstract 
data types for co-operative design environments, change management for 
evolving objects, object sharing in multi-lingual and heterogeneous distributed 
environments, query optimization techniques for abstract data types, 
development of an appropriate performance matrix for OODB's, and performance 
and reliability issues....OODB technology will take five to ten years to transition 
(sic) from its current status of ’proof of concepts' to the status of 'full commercial 
systems'." (SatishM. Thatte, writing in Power and Weiss, 1988; p. 87)

Complex Objects • How Big Is Big?

OODBMS's support large, complex objects whose inter-relationships are part of the data, 

unlike relational databases, where such mappings are stored in the application code in the form of 

joins, projections, etc.. As a result, applications utilizing OODBMS's often have a navigational 

feel to them. The user is provided with an environment where he can look at the contents of an 

object and decide where to go next. At the limit, he may be able to access the entire database 

from a single root. This poses an obvious question: what are the bounds of an object?

This problem has implications for concurrency control and for data integrity. For example
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• How do you place bounds on the closure of an object? The user does not consider the 

entire database as his domain of interest at any one point in time. How does the system 

identify what he does consider to be the set of objects he is interested in.

• When you save an object, do you save every sub-object which is reachable from it, or 

some sub-set?

• What kind of locking strategy can be used when, in the bounds of a single session, the 

user can navigate the entire database?

• Where should related objects be placed in the database? What sort of clustering 

strategies best meet the needs of the application?

Concurrent Access

Concurrent access to object-oriented databases raises two issues which must be 

addressed in their implementation:

• the nature of the applications which O O DBM S’s would typically be targeted to require 

prolonged access and manipulation of data - unlike conventional database systems 

where transaction durations are typically measured in fractions of seconds;

» complex objects may often take the form of directed graphs; concurrent access to such 

data structures is a more difficult problem than that faced by other DBMS's.

Prolonged Transactions

(Fishman, et al, 1987) identifies the characteristics of OODBM S applications which 

require prolonged access to the database. These include:

• Applications where one unit of work includes many conventional transactions against a 

number of different databases, possibly distributed across a network.
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• Artificial intelligence applications where highly interactive queries may represent several 

concurrent and inter-related transactions, many of which are read-only.

• Design applications in CAD/CAM and CASE which require long transactions, with 

durations often measured in days and where the intermediate results of a transaction may 

be of interest to other users of the system. Further, since these transactions may 

represent several days work, allowing the DBMS to automatically abort them due to 

deadlock, or some other anomaly, is not viable. These applications also require the 

simultaneous existence of a number of different versions of *he same objects.

In order the satisfy the requirements of the design transaction scenario, Fishman, et al proposed 

that the basis for concurrency control be provided by a version manager. Under this approach, ail 

transactions are allowed to commit. If a conflict is identified by the system, an alternative version 

of the objects in conflict are created. Users check out one or more ooject versions for extended 

periods, and as a result, the locks required for them are maintained in persistent storage. This is 

in contrast with most database systems, where the locks are maintained in the program memory of 

the DBMS.

One approach to the implementation of a multi-user design environment is to provide 

concurrency control, in the conventional sense, only for the length of time required to check out 

a consistent view of the object the user wishes to manipulate. The transaction manager of a 

traditional DBMS would be used while persistent locks are put on the objects being reserved for 

the user. Those objects would remain locked until they are returned (checked in) by the user 

However, instead of over-writing the old data at commit time, the DBMS will create a new version 

Since a design transaction may last for days, there must also be mechanisms to allow the user to 

save intermediate stages of his work. These partial saves may be made to the database rtself, or
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to some data store local to the user. If they are made to the database, they may be made available 

to the other users of the system on a read-only basis.

Complex Objects < Directed Graphs)

While some research is available on how to perform locking on hierarchial data structures, 

it seems that concurrent access to structures which are essentially directed graphs remain an 

issue. Under the hierarchiai approach, a number of locking protocols are available (Ullman.

1988). One approach is to set a lock on the parent object, and whenever a lock is required on a 

child object, the lock tree is traversed in the correct order. However, it must be noted that 

whethei or not a lock on the parent object implies locks on all of its children is application 

dependent. In some applications, the entire database may be reachable from a single root.

In situations where objects are directed graphs, a strictly hierarchial locking strategy will 

not work, since there is more than one path to an object. As a result:

"You have to know ail of the objects within a closure of an object to determine 
whether the closures overlap. That is difficult for two reasons, one is that the 
closures are often very large, and that means keeping track of a large amount of 
information. When you try to determine whether two closures overlap so that you 
can allocate a lock, you have to look at an awful lot of objects, which may not 
even be on the same server. If it is a distributed system, determining the closure 
overlap is going to take you all over the place. It is not clear that the method will 
work in practice." (David Wells, Texas Instruments, as quoted in Power and 
Weiss, 1988; p. 84)

Concurrency control in object-oriented databases will largely be the responsibility of the 

application developers. The best approach seems to be to supply the developers with a number 

of locking and versioning primitives, which are then used to create application-specific strategies. 

These locks and versions are maintained in persistent storage. While there is still a need for 

conventional concurrency control mechanisms, they are used primarily to ensure that the user is 

getting a consistent view of an object while these persistent heks are being placed.
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The One-Level Store Abstraction

The concept of a 'one-level store' comes primarily from those programming language 

researchers who are interested in the problems of providing persistent objects. Briefly, the idea 

is that users and developers of systems which use a persistent object store should remain 

unaware of whether an object is in memory or on disk at any point in time. The idea is to make the 

storage of objects in a database transparent to the application programs which manipulate them. 

This is in contrast with most current database systems which differentiate between persistent and 

dynamic objects in terms of how they are defined and what operations may be performed on 

them.

The motivation for this approach is to avoid the situation common to many database 

programming environments now, where the programmer must deal either with a number of 

function calls to some database access routines or with an embedded data manipulation language 

which does not mesh well with the host programming language (ie. impedance mismatch).

The major issue surrounding the concept of one-level stores is whether it is a useful 

abstraction. Those from a programming language background view it as a natural way to 

implement persistent objects for a language. From a database perspective, it poses a number of 

problems. For example, if you have a database manipulation language which has been highly 

optimized for querying and manipulating persistent data, how well will it handle dynamic data7 

How useful is a one-level store in a multi-user environment, wnere the programmer will have to be 

concerned with object locking and transaction management regardless?

Classes and Their Sets

One key issue regarding OODBMS implementation is the meaning of classes in 

programming languages, classes define the common characteristics of their instances; as such,
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they are strictly intensiona! On the other hand, in most database systems, classes are 

extensions!, in that a collection of all of the instances of a class are maintained by the system.

Those who are basically interested in adding persistent objects to an existing OOPL, 

such as Smalltalk, often find the idea of a relationship between a class and its instances a foreign 

concept, as there is no comparable notion in programming languages. Maintaining such a 

relationship causes problems for garbage collection. If an instance is referred to by its class, it will 

always have at least one reference to it, and as a result, will never be reclaimed. On the other 

hand, people whose background is in databases find the notion of extensional classes intuitive. 

Without class-based collections of objects, database queries based on classes would be 

impossible.

The key question is really whether a collection of all instances of a class is meaningful, or 

should applications maintain explicit collections for those instances they are interested in? Many 

applications use instances of the same class, but store them in separate collections (Maier, et al,

1986). This is in contrast to the conventional database approach, which would store all instances 

of the same class in a relation. The different collections manipulated by the application would 

either be defined as a view or buried in the application code as a database query.

Object Deletion

Should objects be deleted explicitly by the application programs, as in traditional 

databases, or should they be automatically reclaimed (garbage collected) by the DBMS, similar 

to the Smalltalk approach? One factor which may make garbage collection a better alternative is 

the sheer complexity involved for the user of identifying those portions of shared, complex 

objects which should be deleted from the system.
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Many researchers hope to avoid this problem all together, by not allowing the deletion of 

objects whatsoever. While this may result in some wastage of storage, the cost of mass storage 

devices is steadily decreasing.

Indexing

Should indexing be supported on the basis of internal state of an object, as is th9 case in 

conventional database systems, or should indices be based on the results of some method 

execution, as encapsulation would seem to require? Recall that objects, by definition, have their 

representation encapsulated within a set of operations specified by their class. An object's state 

is hidden from view. If this approach is followed when indexing objects in the object-base, a 

number of issues result. For example, if an index is based on a procedure call, how can the 

system be sure that the procedure will always return the same value for the same ot ject state7 

This implies that the system must know which structural changes for an object will change the 

result of a method, so that the appropriate indices may be undated. If classes are to share indices 

with their subclasses, what happens when a subclass over-rides the definition of a method which 

forms the basis for an index?

Basing indices on the internal state of an object violates encapsulation; however, it can 

be supported without the expense of procedure calls. One possible solution would be to view 

indices on objects as being part of their definition, and therefore allowed to access their internal 

structure. If indices are allowed on the structure of the object directly, the next question 

becomes, how deep within a complex object can you specify an index7 Only on the named 

instance variabr s specified in that class, or on instarce variables of instance variables?
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Class Modifications

How to best handle changes to class definitions is an important research topic in 

OODBMS's (Penney and Stein, 1987), (Zdonik, 1986), (Banerjee, et al, 1987), (Kim, et al,

1987). It may be viewed as being related to the concept of data independence, since it deals 

largely with the same set of issues: how can the schema be changed with minimum ;mpact on the 

applications using the database and how should persistent objects be brought into line with their 

modified class definition? The second issue is trivial in an environment where objects are not 

persistent, since the programs involved may be simply re-compiled.

The schema of an OODBMS is, in some ways, more complex than a conventional 

database This is largely the result of inheritance and the binding of methods to classes. The 

following is a table of possible class modifications allowed in the Orion OODBMS, as shown in 

(Kim, eta l. 1987; p. 120). Under their notation, nodes and edges refer to classes and 

specializations in a class lattice which supports multiple inheritance.

Changes to the contents of a node (a class)
Changes to an instance variable

Add a new instance variable to a class
Drop an existing variable from a class
Change the name of an instance variable of a class
Change the domain of an instance variable of a class
Change the inheritance (parent) of an instance variable

(inherit another instance variable with ihe same name) 
Changes to a method

Add a new method to a class 
Drop an existing method from a class 
Change the name of a method of a class 
Change the code of a method in a class 
Change the inheritance (parent) of a method

(inherit another method with the same name)
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Changes to an edge
Make class S a superclass of class C 
Remove a class S from the superclass list of a class C 
Change the order of superclasses of a class C 

Changes to a node
Add a new class 
Drop an existing class 
Change the name of a class

Two basic approaches have emerged to handle class modifications The first (Zdonik.

1986), calls for the placement of filters between the old object representation and its current 

form. The persistent objects are not modified until they are actually used by methods expecting 

the new structure. The second approach is to convert all of the persistent objects to their new 

representation at the time of the class modification. These two alternatives correspond roughly to 

"pay me now or pay me later" (Penney and Stein, 1987. p 111)

4 .2 . A Data Model Which Supports Objects

One data model which has been proposed for the support of object-oriented database is 

the Decomposed Storage Model (DSM) (Copeland and Khoshafian. 1985) The model is 

decomposed, in that, each attribute of an object class is represented as a separate binary 

relation. As a result, the values of each attribute are stored in a separate file The model supports 

a number of concepts which are important for the storage of persistent objects, including

• the concept of object identity, through the use of surrogate keys.

• directed graphs of objects;

• heterogeneous records; and

• multi-valued attributes.

The basic ideas behind the DSM can be descnbed best by comparing the model to a 

typical relational storage model, where all the attributes of an object are stored together and
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object identity is not supported. This approach will be taken in the following sections, which shall 

describe the key features and characteristics of the Decomposed Storage Model. Note that the 

examples used in this discussion were based on those in (Copeland and Khoshafian, 1985).

In order to get a feel for the model, however, first examine figures 4.1. a) and 4.1. b), 

which show how a relation would be defined and stored under a relational database, and one 

which supports the DSM

Figure 4.1 a): A Normalized Relation

R a l a2 a3

V1 1 v 2 1 v3  1

v1 2 v 2 2 v 3 2

v 1 3 v 2 3 v 3 3

The a's represent attributes, 
the v's represent values

Figure 4.1 b): A Fully Decomposed Relation

sur

a2 valsur vasurval sur

v 2 2 v 3  2

v 3 3v 2 3
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Object identity and Directed Graphs

Object identity is supported through the use of surrogates, which are system-supplied 

keys which are independent of the attribute values of the objects they represent The DSM  

requires that these surrogates are stored in a separate file. As a result, it is possible to represent 

the existence of entities for which no information at all is known, without the need for storing 

explicit nulls to represent unknown information.

Object identity, implemented through the use of surrogates, allows the representation of 

directed graphs of database entities, which is crucial for the support of the complex objects This 

is done by allowing surrogates of the child entities as attributes Under the DSM, this will result in 

a binary relation made up of the parent surrogate and the child surrogate. An example of this is 

shown in Figure 4.1 c). Note that object surrogates have been stored as the values of a relation
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Figure 4.1 c): Representing Graphs Using the DSM

r 1 su r

s1

S3

a 11 sur val a l  1 s u r val

S1 S2 S1 s3

S3 S2 S3 S1

r 2 su r a 2 l su r val a 2 2 s u r val

s2 s2 St s2 S3

The DSM  relations shown above correspond to the directed, cyclical graph 
shown below. S2 is highlighted since it is a different type than s1 or s3.

s2

Heterogeneous Records

Heterogeneous records, refers to the ability of different tuples within a relation to have 

different attributes. For example, a relation which describes a set of employees might contain 

both engineers and salesmen. Both would include attributes a1 and a2 (say, name and birth 

date), but salesmen would have attribute a3 (company car) and engineers would have a4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

65

(project). Under the relational approach, this would result in a storage structure shown in figure 

4.2 a); note that an extra attribute, denoting the type of employee being represented must be 

added to the relation. Under a more sophisticated approach, where the relation has been partially 

decomposed is shown in 4.2 b) (Note that this representation assumes that a1 - the employees 

name - is a unique key).

Figure 4.2 a): Heterogeneous Relations_______________________________________

R type a1 a2 a3 a4

1 1 v 1 1 v 21 v 3 1 n /a

12 v1 2 v 2 2 n /a v 4 2

12 v 1 3 v 2 3 n /a v 4 3

Figure 4.2 b): A Normalized Representation of a Heterogeneous Relation

R1 a1 a2 t l a1 a3

a 1 1 a21 a 1 1 a 3 l

a 1 2 a 2 2

a l 3 a 2 3 t 2 a l a4

a i 2 a 4 2

a 1 3 a 4 3
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The DSM approach is shown in figure 4,2 c). While the partially decomposed relational 

structure is acceptable in terms of storage efficiency, it would involve spreading the 

representation of an employee over several relations. Furthermore, this decomposition is not 

performed automatically, as it would be using the DSM. Instead, its specification would have to 

be included in the design of the conceptual schema.

Figure 4.2 c): A DSM Representation of a Heterogeneous Relation

r sur a1 sur val

s1 S1 v1 1

s2 s2 v1 2

S3 S3 v1 3

a2 sur val a3 sur val

s1 v21 S1 v 31

s2 v 2 2

s3 v 3 3
a4 sur val

s2 v 4 2

s3 v 4 3

Multi-Valued Attributes

Multi-values attnbutes (also referred to as non-first normal forms), refers to the ability of a 

single attribute of a relation to have more than one value. For example, in an employees relation, 

you may wish to record the employees' children. Obviously, this attribute could involve several 

values for each tuple
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Support of multi-valued attributes in a relational data model results in either reduced data 

independence or in greater complexity. If the storage model directly supports multi-valued 

attributes, a more complicated storage structure is required. The other alternative would be to 

further normalize the relations. Each attribute which could contain multiple values is decomposed 

into another relation. As a result, however, data independence is reduced, since a charge from 

a single to multi-valued attribute (or vice versa) will result in a change in both the conceptual 

schema and the underlying file structures.

Figure 4.3 a): Multi-Valued Attributes

R a1 a2 a3

v 11 v 2 1 v 3  1

v 1 2 v 2 2 v 3 2

v 1 3 v23 , v24 v 3 3

Figure 4 3 a) shows an example of a relation which contains multiple values for attribute 

a2. Under the DSM, this would result in a2 being represented, quite naturally, as an additional 

tuple in the relation for that attribute. This is illustrated in Figure 4.3 b). Thus the DSM approach 

has the following advantages.

• no additional complexity is introduced by the presence of multi-valued attributes, and

* data independence is not affected, since switches from multi to single-valued result in no 

changes to the storage structures.
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Figure 4.3 b): A DSM Representation for Multi-Valued Attributes

a2 sur val

S1 v 2 1

S2 v 2 2

S3 v 2 3

S3 v 2 4

4 .3 . GemStone: An Object-Oriented Database

GemStone, and its programming language OPAL, is one of the few commercially 

available object-oriented databases. It is also one of the best documented in the literature (Maier, 

et al, 1986), (Penney and Stein, 1987), (Purdy, Schuchardt and Maier, 1987) and (Maier and 

Stein, 1986). Other examples of object-oriented databases1 include: PO STG R ES (Stonebraker 

and Rowe, 1986), (Stonebraker, Anton and Hanson, 1987); ENCORE (Hornick and Zdonik,

1987), (Skarra and Zdonik, 1986), (Smith and Zdonik, 1987); ORION (Kim, et al, 1987), 

(Banjeree, et al, 1987); Iris (Fishman, et al, 1987); Emeraude/PCTE (Emeraude, 1987);

VBASE (Andrews and Harris, 1987); and VOOD (Barbedette and Richard, 1986).

The basic approach taken in the design and implementation of GemStone was to extend 

the Smalltalk language with a number of database amenities. These include: support for queries 

over collections, persistent storage structures, class definition facilities and a multi-user 

environment for data sharing. Unlike most other efforts which extend programming languages 

with persistence, however, the GemStone group comes primarily from the database community.

1 It should be noted, however, that although these systems share the label 'object-oriented database 
systems', they are often radically different in terms of their design and implementation.
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As a result, it is a database first, with a Smalltalk-like language and programming environment 

available for applications development. The choice of Smalltalk as its basis was, in fact, largely 

market-driven since it is the best known of the object-oriented languages.

The basic GemStone architecture can be seen in Figure 4 4 . The key things to note are:

• Stone provides the basics of a centralized, persistent object server This includes such 

things as storage management, concurrency control, transactions, recovery, support for 

collections and active session workspaces. Object identity is supported in Stone through 

the use of surrogates - referred to as 'object-oriented pointers' (OOPs) - similar to the 

Decomposed Storage Model described above. However, an object's instance variables 

are stored together, unlike a decomposed representation. Stone maintains an object 

table, in the form of a B-tree indexed on OOPs, which maps OOPs to physical locations

Stone provides four basic storage structures- self-identifying (ie. Smalllnteger, 

Character), byte (ie. String, Float), pointer (ie. Employee, SMEArc), and non- 

sequencable collection (NSC) (ie. Set). NSC's may be queried. Stone provides only the 

most basic operators for object access a id  manipulation.

• Gem  corresponds roughly to the virtual machine layer in a Smalltalk implementation It 

adds the data abstractions required to add the object-onentedness' to the GemStone 

model. It also provides such facilities as the OPAL byte-code interpreter and access and 

session control. Gem also includes the system-supplied hierarchy of classes.

Gem provides a facility to constrain named instance vanables to be of a certain 

class. For example, an Employee's name variable could be constrained to be a String

• Agents are a set of routines to facilitate communication between GemStone and 

applications written in other languages, such as C and Pascal Programs written in those
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languages may make calls to an Agent process for session and concurrency control, 

passing messages to GemStone objects, executing OPAL statements and compiling 

OPAL methods.

Information is passed between the Agent and Gem in the form of bytes and 

object pointers.

• OPAL, as mentioned earlier, is basically the Smalltalk language extended to support 

persistence. OPAL supports class definitions (data definition), data access and update 

(data manipulation), and control of the GemStone server. However, the user interface 

classes which are so much a part of the Smalltalk environment, have been removed from 

the OPAL image. Applications are instead expected to manage the human interaction via 

modules written in C or Pascal, with database access provided by an Agent process. The 

OPAL Programming Environment (OPE) provides a window-based interface for the 

creation and modification of GemStone classes.

Gem, Stone and Agent are separate processes. While there may be multiple Gem and Agent 

processes running (typically one each per user session), there is only one Stone process 

running per GemStone system.
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Figure 4.4: The GemStone Architecture
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Session and Access Control

All objects in a GemStone database belong to a particular segment. Segments are owned 

by users, and each user owns at least one segment. Access permissions to a segment may be 

granted by its owner to other users of the sy;<em, who are identified by userid and password 

control by GemStone. Note that having a pointer to an object is not the same as having 

permission to access it; furthermore, having permission to access an object does not imply 

access to all of its sub-objects.

Each GemStone user has a list of name spaces specified in his UserProfile. There are 

dictionaries which are used to provide individual users the .llusion of a global name space. 

Whenever a name is encountered by the OPAL compiler which is neither an instance or a class 

variable, the user's name spaces are searched to find the object being referenced. Name spaces 

may be included in the UserProfile of a numbei of users, and are therefore a mechanism for 

sharing information.

Concurrency Control

Concurrent access to the database is provided by Stone, which maintains a workspace 

for each active session. This workspace contains a shadow cooy of the object table, which was 

based on the most recently committed object table, referred to as the she d table. W henever an 

object is modified by a user, a new copy of it is placed on a disk page which is inaccessible to 

other sessions The user's shadow copy of the object table is then modihed to point to the new 

object location The shared table is not actually copied at the beginning of a session, instead, 

the top node of the B-tree which represents the table is copied, and nodes are added to the tree 

as objects are accessed during the session.
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Unlike the locking two-phase locking protocol discussed in the previous ch pter, the 

concurrency control scheme implemented by Stone is optimistic. Conflicts are checked at commit 

time, rather than prevented through locking. Stone keeps track of the objects which a transaction 

has read and written, and conflicts with other transactions which have committed since it began 

are identified. If any conflicts are identified, the changes 'i the shadow table are discarded, afler 

the disk pages used to write new objects are reclaimed by the storage manager. This approach 

has the advantage that read-only transactions can never conflict, since they never write to the 

database at commit time. However, care must be taken to ensure that write transactions are not 

too big, since long periods between commits may result in lost work.

Collections and Indexing

Indexing in GemStone is provided for collections, rather than classes Those applications 

which require associative access to the instances of a class must implement that class to maintain 

its own instan- 3 collection No such collection is provided automatically by the system

Indices therefore exist on explicitly maintained collections. They are created and 

removed by sending a message to an instance of Bag or Set, which specifies the path that the 

index is for. For example, if empSci if a set of Employee objects, an index may be added to the 

set by sending a message specifying that it is to be built on empNarr.e last (ie. the last name of 

the employee instances in the set).

Indices may be based on either the value of a path, or its identity. Note that since a value- 

based index (known as an equality index) is based on the internal state of an obiect, if violates the 

encapsulation of those objects for which it is defined. For an equally index to be defined, the 

types of the instance variables mentioned in the path must be constrained to be of a particular 

type.
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Q uery g

Assuciative access is performed in GemStone by querying collections which are 

maintained explicitly by the application. The query language itself is in the form of a messi c 

protocol implemented by class Collection and its subclasses, such as Set and Bag. For example:

aBag select: aBlock

The block may be thought of as a Boolean selection expression which is evaluated against each 

element of the collection. If the expressk evaluates to true, the element is included in the 

collection returned by the query Whether or not an index is to be used can be controlled by the 

programmer, by using braces instead of brackets to enclose the block expression. For example:

aBag select
{ anEmp | anEmp.empName.lastName = 'Sanders'} 

would cause a index to be used, if one existed, while

aBag select:
[ :anEmp | anEmp empName.lastName = 'Sanders']

would not

G arbage C o llec tio n

Garbage collection is done at two points in GemStone. The first is during user sessions, 

where objects which have been created and then later de-referenced are treated as garbage and 

their memory reclaimed. Once an object has been committed to the database, however, it may 

also later become garbage. In order to handle these, GemStone collects persistent garbage off­

line, using a mark-sweep algorithm Noie that this requires that the database be made unavailable 

during the time when the garbage collection process is being run.
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5. Design  Issues

Before turning to the design issues addressed in this work, a number of underlying 

definitions must be made d ear to the reader These definitions are intended to describe the 

differences between an object-oriented database management system, an object server, and an 

object-oriented database programming language

Object-Oriented Database Management Systems: These systems support 

persistent objects using a complete environment. They typically have their own 

programming language (which may be embedded in a different host language), memory 

management, and data model. If the persistent objects are used by a host programming 

language, the applications developer must deal explicitly with the location of objects 

The objects must be explicitly read into memory by the program before being acted upon, 

or commands issued to the DBMS to perform actions upon the persistent obiects in the 

database. An example of an OODBMS is GemStone, as described in the previous 

chapter.

Object Servers: These systems provide persistent object support for an existing 

programming language. The abstraction of a 'one-level store' may be supported In other 

words, the applications programmer no longer must be concerned with the location of the 

objects he is dealing with However, there remains a delineation between the 

programming language, and the persistent object server For example the object server 

requires a separate address space from the executing application This work represents 

the design and implementation of an object server for the Objective-C programming 

language.
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Database Prog ran” Ing Languages: These systems seek to provide programming 

languages wh.. c persistence is designed right into the language itself. There is no 

separation f .tween the persistent object manager and the language. Such languages 

are describe'I in (Cockshot, et al, 1983) and (Atkinson and Buneman, 1987). A number 

of thoughts on creating such a language are described in the concluding chapter, under 

Future Research.

5.1 . Design Goals and Constraints

The following sections describe the short and long-term design goals for the object 

server The immediate goals are those which must be met by the initial implementation, while the 

long-term goals are those which must be allowed for in the design, so that future enhancements 

may be made with minimum effort.

Im m ediate  G oals

The first goal of any object server must be the reliable, persistent storage of objects. That 

is the primary raison d'etre for any form of database system. The following describes the 

objectives which this work must satisfy in its implementabon.

• Object-Oriented Data Model. Since the object server is intended to support an object- 

oriented programming language, its data model must provide the features inherent in the 

obiect-oriented methodology. These features include support fo r . object identity, 

inheritance, complex objects, encapsulation, and an extensible typing system. Recall 

that support for extensible types requires supjSort for: the declaration of new types, the 

definition of operations for those types, and the ability to detine new database access 

routines for those types.
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Persistent objects are to have their allowable operations defined in the Objective-C 

language. Furthermore, class definitions used by the object server must also be shared 

with the Objective-C compiler. Therefore, some facility for maintaining the required 

relationships between the object server schema and the Objective-C application code 

must be provided.

Schema Modifications: Access to the system's meta-data must be provided, and the 

user must be able to manipulate it in order to define and modify the class definitions which 

make up the database schema. Class modifications must be reflected in some reasonable 

manner in the data manipulated by the Objecfive-C methods.

Object Granularity: The objects being manipulated by the toolset fall into two broad 

categories: complex, highly structured objects which are made up of numerous objects 

of relatively small granularity: and large, unstructured objects (such as text). The object 

server must provide access to objects of both types, with reasonable access and update 

performance.

The granularity of persistence must also be addressed in the implementation. For 

example, are entire complex object graphs, individual objects or individual variables 

within objects to be the unit which may be specified as persistent.

Consistency with Qbiective-C: The goal of this work is to provide a persistent objecl server 

for the Objective-C language. Impedance mismatch must be kept to a minimum. The 

typing system must be as close as possible to that used by the language For example, 

introducing a stronger notion of typing in the obiect server's data model would not be 

beneficial. Similarly, splitting the storage of instances into their various types, as 

specified by their inheritance hierarchy, would not be useful, since Objective-C stores
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the entire objecl as one unit.1 The server must also support the basic data types 

manipulated by the language. These include the C primitive data types, and the 

foundation object classes provided with Objective-C.

Along the same lines, the object server implementation should require as few  

modifications to the Objective-C language and run-time supfjort facilities as possible. For 

example, modifying the compiler to recognize persistent objects as some special case is 

not an option.

■ Integration with Objective-C: The object server, as a development tool, must be as 

simple to use as possible. First and foremost, this implies that the object server should 

be well integrated with the Objective-C language. Accessing persistent objects should 

no* require the use of some special protocol; persistence must be provided to objects 

without requiring that they be a subclass of some special class; the location of persistent 

objects (ie. in memory or on disk) should be transparent to the program2 ; and the use of 

persistent objects should be syntactically identical to normal object usage.

Although the object server should be as straightforward to use as possible, it 

does not necessarily have to be invisible. Some reasonably small amount of interaction 

between the client programs and the object server is allowable.

*«•

1 For example, say you had two classes - Person and Employee Employee inherits from Person. 
Instances of Employee have all of their instance variables contained within the sam e object. An alternative 
approach would be to have the Person portion of an Employee stored in one memory ' cation, and the 
Employee portion of an Employee stored in another. In a database sense, this woulo im jy  two entities 
pecords) would be required to store one instance of Employee.
2 This is generally referred to as the 'one-level store’ abstraction, whereby the m ovem ent of data between  
d isk and rnemory is hidden from the programs accessing the data.
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Long-Term Goals

While not part of the initial implementation, multi-user access to the object base is of great 

interest - tor both practical and academic reasons. Concurrent access to persistent objects 

would be an important step towards a complete CASE environment, with support tor all of the 

team-oriented aspects of the software development process. It is also a difficult, and therefore 

interesting, problem. Multi-user access to databases which support CASE environments 

remains, to a large degree, a research issue. This is largely due to the fact that such 

environments require two complex features: support for prolonged access to data, while 

maintaining a consistent database, and for the maintenance of multiple versions of the design 

objects.

Proposed extensions to the object server implementation for multi-user access are 

contained in the Further Research section at the conclusion of this work.

5.2 . The Basic Architecture

This section is intended to give the reader an introduction to the object server design. 

Subsequent sections will describe its components in greater detail.

The basic structure of the object server, and how it relates to the toolset, can be seen in 

Figure 5.1. Some key things to note are:

• Objective-C applications utilize the object server by linking the class ObiectManager with 

the application. The ObjectManager has no instance methods - its functionality is 

implemented as a class protocol. When the application begins, the ObjectManager is 

initialized by sending it the open message, which returns the database root object. The 

ObjectManager session may be terminated by sending it the close message
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• Persistent objects are read from, added to, and updated in the object base by making 

calls to the ZIM  Programming Language Interface (PLI) routines described in the follow:ng 

chapter.

• All data manipulation of the persistent objects is performed within the address space of 

the Objective-C application. Updates cannot be forwarded to the object server to be 

performed in some asynchronous manner; all calls to the ZIM PLI routines are blocking. 

Objects which are required by the application are read, manipulated by Objective-C 

methods, and then returned to the database.

• The applications which use the object server do not access the persistent objects directly. 

Instead, database objects are represented in the application by instances of class Proxy. 

Messages which are sent to proxies have their receiver object transparently changed from 

the proxy to the underlying database object which it represents. This swap is performed 

by a modification to the Objective-C message sending kernel. No changes were required 

to the Objective-C compiler.

• W hen a message is sent to a Proxy instance, if the persistent object it represents has not 

already been read, it is loaded from the object base and cached by the ObjectManager. 

This provides the illusion of a ‘one-level store’.

• The ObjectManager utilizes metadata (the “Object Schema") to describe the 

representation of objects - in both their object base and Objective-C formats.

• Objects are saved to the object base by explicitly telling the ObjectManager to commit. 

New objects, and changes to existing objects of a persistent class are saved to tho 

database only if they are committed. This results in an implicit read/explicit write data 

access model.
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• Persistent objects are stored in a ZIM relational database, using the ZIM Programming 

Language Interface. An object-oriented data model has been implemented using the 

PLI. All instances of a persistent class are stored in the same ZIM database file.
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Figure 5.1: The Object Server Architecture
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5 .3 . The Data Model

The data model implemented by the object server supports the concepts basic to the 

object-oriented methodology. These include: support for object identity, complex objects and* 

multi-valued attributes. Unlike the Decomposed Data Model presented in Chapter Four, the 

selected data model stores all of the attributes of an object on the same record All instances of 

the same class are stored in the same ZIM database file. Note that the data representation of each 

object includes all of the instance variables defined for instances of its class - including all of the 

variables defined in superclasses. Figure 5.2 illustrates this point. It shows the definition of two 

classes (in Objective-C syntax), and how an instance of each class would be stored as records in 

their corresponding database file. Notice that instances of class Employee contain the variables 

defined in the superclass Person in the same structure.

Since the goal of this research effort was to provide a persistent obiect store for the 

Objective-C language, every attempt was made to keep the database representation of 

persistent objects close to the internal Objective-C format. In fact, the data model used by the 

object server is essentially a ZIM -based, persistent implementation of the Ob|ective-C data model

The following sections describe the key features of the data model, and provide some 

insight into their ZIM  PLI implementation.

Object Identity

Identity is one of the key properties of objects. It is supported in the data model by 

assigning every object a unique surrogate, called the Object Identifier (OID) The OID of each 

object has two parts: the first is the integer Unique Identifier (U ID) of the object, the second is the 

class number of the object, which is actually the ZIM  database file number which contains all 

instances of that class. The O ID  is actually represented as a C double precision number: the
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integer portion is used as the UID, and the decimal portion is used as the class number. This 

implies that every object in the database has a nine-byte header: eight bytes to represent the 

double, and one byte to hold the 'null' byte used by ZIM  itself.

Since OID's contain both a unique identifier and the Z IM  file number where the object

resides, they can be used to locate objects in the database without the need for an object table

The O ID  contains all of the information needed to find the physical location of the object. Figure

5 2 shows how this would be performed. Suppose you had read the object representing Fred

le'Jamtor, and you then wished to access the obiect representing his spouse. Her O ID  is stored

as an instance variable of Fred. Using the ZIM  PLI, you can find her object by searching the

database file #101, as indicated by the class identifier contained in her OID.

Figure 5.2: Persistent Object Representation___________________________________

= Person : O bject { / /  Z IM  file 101 
char name[301;

}

= Em ployee : Person { / /  Z IM  file 102  
int em pN um ;
id spouse;

}

E m p lo y e e  D a ta b a s e  file # 1 0 2

OD name empNum spouse

11 1 1 . 0 1 0 2 Fred le'Janitor 9 9 9 2 2 2 2 . 0 1  01 |

P e r s o n
OID

D atab ase  file #101  

name
k

2 2 2 2 . 0 1  01 Molly le ’Janitor
\

+»
\
\
i
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A persistent object (called, say O^) is therefore stored in the database with a unique 8- 

byte key - its OID - which allows its retrieval. Other persistent objects (for example, 0 2) that 

reference O^ do so by storing its OID as the value of an instance vanable of type id. Note that 

when 0 2 is read into memory, the 8-byte OID referencing 0 1 must be converted into some 4-

byte value, which is the size of an id1. In fact, the OID is used to create an instance of class Proxy, 

which will be discussed in detail in Chapter Seven.

Object Typing

Persistent objects follow the same typing conventions as ordinary Objective-C objects 

That is, their types are resolved at run-time, rather than at compile-time All objects are of the type 

id as far as the compiler is concerned. At run-time, the objects’ isa pointers are used to identify 

which class the object is an instance of. No attempt is made to constrain the type of a certain 

instance variable to be of a certain object class. This applies only to instance variables which are 

of type id. For all other variable types, the regular C language typing rules appiy.

Early in the lesign of the object server, introducing a stronger typing mechanism was 

considered. However, it seemed to buy relatively view benefits and presented the possibility of 

introducing impo-'ance mismatch between persistent objects and Objective-C.

Data Types

The object store provides a mechanism to maintain persistent objects. It does not 

support C structures or unions as units of persistence The types of the instance variables within

objects is limited to the following primitive types:

short, long, int, unsigned, double, float; 
char (as a character array, not a C string), boolean, 
id (objects).

1 Recall that an id is nothing other than a C pointer, which on the SUNs is four bytes.
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To get the functionality of a C null-terminated string, use instances of the class String.

Since ZIM  supports only a subset of these data types, the object server must convert the 

types when reading and writing objects from the database. The types, and their Z IM  storage type 

are:

__________________________________Stored as
short short
long long
int long
unsigned long
double double
float float
char char
id double (an OID)

The object server presently supports the following Objective-C classes:

Object
Cltn

OndCltn
Stack

Set
IdArray
Stnng
Point
Rectangle

Thus the object server supports most of the "Foundation classes" which come with the 

Objective-C compiler1. As will be described later, many of these classes must be treated as 

special cases by the ObjectManager. This is due to the non-object-onented techniques used to 

implement these classes. Specifically, the principle of encapsulating objects was abandoned in 

favour of speed in their implementation.

1 fhe following Objective-C  Foundation classes are not presently supported: Bag, BalNode, SortCltn, 
Assoc, Dictionary, BytArray, IntArray, and Sequence. Their absence is pnmarily the result of the fact 
tha at present, they are not utilized by the toolset code.
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Complex Objects

Complex objects are essentially directed graphs of inter-related objects. The

connections between related objects in the database may be represented using the Obiect 

Identifiers (OIDs) of the various objects. A persistent object (called, s a y O j )  which refers to

second persistent object (Og) does so by stonng 0 2 ‘s OID as the value of an instance variable ol

type id. In some ways then, the data model is similar to a network model, where the links between 

objects are maintained as unique database identifiers.

Consider the previous example concerns , Fred le'Janitor. An extended example, using 

a more purely object-oriented representation, could use instances of the class Name, in which a 

Person's first and last names are String objects (see Figure 5.3). In this example, we have 

introduced two new classes - Name and String. Name is 0 complex object which has two instance 

variables, namely firstName and lastName, which are both instances of class String. Note also 

that the Person class has been extended, such that the instance variable nano is ncv an object 

(an instance of class Name), and that the instance variable spouse has been added to it In (he 

example using Fred le'Janitor and his wife Molly, the database must now store eight distinct 

objects which form a directed graph, with a cycle1

The concept of complex objects may also be used to explain how the object server is to 

be utilized by the foolset. Essentially, the contents of the entire cbjecf base may be viewed as 

one large, complex object. Every object in the database is reachable from a single databa > root 

object When a session with the ObjectManager iz started, the r-ot object is supplied to tne

Molly is referred to by Fred as a spouse, and vice versa
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application. As the toolset session navigates the network persistent objects, they are read in 

from the object base. This process will be described in detail in the following chapter.
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rlqure 5.3: Representing Complex Objects

= N am e : O bject { / /  Z IM  file 100, Strings are  in file 109  
id firstName,

lastName;
}
= Person : Object { / /  Z IM  file 101 

id nam e,
spouse;

}
-= fcmployee : Person { / /  Z IM  file 102  

int em pNum ;
1

^ O b je c t  representing Fred le 'Janitor (E mployee)!

i99~j1 1 1 1 . 0 1 0 2  1 1 9 9 . 0 1 0 0 2 2 22 .01 01

^  Name

1 1 9 9 . 0 1 0 0 1 1 7 7 . 0 1  0 9 11 6 6 . 0 1  0 9

1 2 8 8 . 0 1  0 0 1 1 8 7 . 0 1 0 9 11 9 6 . 0 1  0 9

   ^

St r ing
-> ■> 1 1 7 7 . 0 1  0 9 Fred

1 1 6 6 . 0 1  0 9 le ' Jani tor

1 1 8 7 . 0 1 0 9 Mol l y

1 1 9 6 . 0 1 0 9 le ' Jani tor

Person

2222 .0101 1 2 8 8 . 0 1  00 11 1 1.01  02

O bject representing M olly le 'Janitor
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M ulti-Valued Attributes

Objects which have attributes which are multi-valued may be represented by using 

instances of the various collection classes provided by O bjective-C  as their attribute value. For 

example (Figure 5 .4  a & b), say that Employee objects w ere to now maintain a set of all of their 

children. This may be done by simply assigning the instance variable children a set object (or 

some other collection-type object) as its value. In Objective-C. instances of class Cltn (Collection) 

and its subclasses - suc^ ^s Set - maintain their contents as an IdArray, as is shown in the figure. 

Instances of these collection classes are often referred to as aggregate  objects.

Persistence Granularity

Most persistent object systems use the object as the unit of persistence. That is, an 

object is the smallest unit that may be placed in the persistent object store. Typically, which 

objects are to be saved is specified by describing a class of objects to the system. Instances of 

that class m ay then be saved to the object base.

The data model used here allows instance variables as the unit of persistence. This allows 

for the specification of object classes which save only portions of their instances in the database  

The portions not saved are assum ed to be resolved at run-time by the application. W hen an 

object is read from the object base, any non-persistent variables are initialized to nulls; when an 

object is written to the database, any non-persistent variables are rem oved before the object is 

stored.

This approach is motivated by the fact that many of the classes which m ake up the toolset 

contain instance variables which have non-persistent instance variables. For example, many
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objects contain references to SunView structures. These structures represent some run-time, 

graphical representation of the object. As such, it makes no sense to save these structures to 

the object base.

Figure 5.4 a): Defining Multi-Valued Attributes

= N am e : O bject { I I  Z IM  file 100, Strings are in file 109  
id firstNam e,

lastNam e;
}
= Person : O bject { // Z IM  file 101 

id name;
}

= Em ployee : Person { / /  Z IM  file 102  
int em pNum ;
id dependents; / /  S et is in 110,  IdArray is in 111
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Figure 5.4 b); Representing Multi-Valued Attributes

O bject representing  Fred le 'Jan itor (E m p lo yee)

1 1 1 1 .0 1  0 2 1 1 9 9 . 0 1 0 0 9 9 9 3 3 3 3 . 0 1  1 0

Set

3 3 3 3 . 0 1  1 0 4 3 4 3 . 0 1 1  1

I d A r r a y P erson

4 3 4 3 . 0 1  1 1 2 2 5 5 . 0 1 0 1

4 3 4 3 . 0 1  1 1 2 2 6 6 . 0 1 0 1

2 2 5 5 . 0 1  01 2 7 8 7 . 0 1 0 0

2 2 6 6 . 0 1 0 1 2 7 9 7 . 0 1 0 0

Name

1 1 9 9 . 0 1  0 0 1 1 7 7 . 0 1 0 9 1 1 6 6 . 0 1 0 9

2 7 8 7 . 0 1  0 0 1 1 8 7 . 0 1  0 9 1 1 9 6 . 0 1  0 9

2 7 9 7 . 0 1  0 0 1 1 8 7 . 0 1  0 9 1 1 9 6 . 0 1  0 9

S t r i ng 1 1 7 7 . 0 1 0 9 Fred

1 1 6 6 . 0 1  0 9 l e ' Ja n i t o r

1 1 8 7 . 0 1  0 9 Freddy Jr.

1 1 9 6 . 0 1 0 9 l e ' Ja n i t o r

1 1 8 7 . 0 1  0 9 Sa l l y

1 1 9 6 . 0 1  0 9 l e ' Ja n i t o r
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6. The Language to Object Server Interface

6 .1 . The Building Blocks: ZIM and Objective-C

The object server was implemented using two tools: the Objective-C programming 

language, and the ZIM  entity-relational DBMS. The following sections describe these two 

products in some detail. Many of the features and constraints mentioned below impacted the 

eventual outcome of this work.

The ZIM Programming Language Interface 

ZIM Basics

ZIM  is a database management system developed by Zanthe Information Inc., of Nepean  

Ontario. The full DBMS supports most of the features of the entity-relational data model, 

although database entities do not have the property of identity. Entities in the database are 

stored in entity sets which are implemented as database files. Any indices on an entity set are 

stored in the same file.

ZIM  provides an integrated environment to build typical database applications. It includes 

multi-user data access routines, a transaction manager, access control and security, a screen 

formatting facility, a report writer, and a 4GL programming and query language, with compiler. All 

of the various facilities are included in the same package, unlike most such products, where many 

of these facilities are separate. The programming language supports all of the common control 

structures, procedure and macro abstractions, and recursion.

Why Use ZIM?

ZIM  has three features which made it attractive for this research. The first is that the meta­

data is available to the programmer as regular data. For example, the definition of an entity type is
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contained in the two entity sets EntitySets and Fields, and the data in these may be manipulated 

as would any other data. These two entity sets maintain the following information:

Entitv Name Field Name Tvoe Lenath Description

EntitySets entN am e char 18 nam e of entity set
Fields SN num 4 sequence num ber of field in set
Fields fieldNam e char 18 nam e of field
Fields ow nerN am e char 18 nam e of set which contains this field
Fields type char 8 data type of field
Fields length num 5 length of field, in bytes
Fields decimals num 2 num ber of decimals
Fields index char 6 indicates if an index is to be 

maintained on this field

The data manipulation language and the data definition language are one and the same 

It should be noted that manipulating the m eta-data does not result directly in changes to the 

database structure. Once the database schem a has been modified, the definitions involved must 

be converted to their internal Z IM  format, and the database files involved reformatted or created. 

Unlike most DBM S's, however, these changes to the schema may be m ade on-the-fly by ZIM  

programs - with the restriction that the database must be accessed in single-user mode. This 

process is analogous to compiling: first the schem a is defined, and then it is converted into a 

format directly usable by the system.

The second feature is that Zanthe offers, as a product, the Z IM  Programming Language 

Interface (PLI). This utility offers access to the database files from within C {and by extension, 

Objective-C) programs. It should be noted that the PLI is nol an em bedded query language, 

such as E SQ L or Q UEL. It provides a series of C  functions which may be called to perform a 

number of database utilities. These include: opening and closing of database files; adding, 

deleting and updating individual database entities (records): adding and deleting index entries, 

password control for access to the database: and starting, committing and aborting database
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transactions An Objective-C message protocol for the ZIM PLI is discussed in the following 

chapter

The third feature provided by ZIM is its portability. The product, including the PLI, is 

available for a wide range of hardware platforms, including: IBM PCs, IBM mainframes running 

VM/CMS, DEC VAXs running VMS, and SUN and Apollo workstations. The ability to re­

implement the object server on different platforms, if required, is a powerful feature.

The combination of these three features supplies a solid basis for developing 

experimental database systems. In this case, ZIM provided the basics required to build a 

complete Objective-C object server. Since the meta-data is available as regular data, it is possible 

to write Objective-C routines to control the class definitions in the object base. However, to have 

these changes reflected in the database, routines must be written in the ZIM  4GL, since that 

functionality is unfortunately not included with the PLI. How this is performed is described infhe  

following chapter.
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ZIM  Objects (Record Structure)

Objects in a ZIM  database are stored as records in a database tile. The records are actually 

ordinary C structures written to disk. These structures may be m ade up of a fairly restricted set of 

data types. The following table lists the types supported by ZIM , ano their corresponding C data 

type.

ZIM Type CTvoe
int short
longint long
vastint double
char1 char (as an array, not a null terminated
alpha char string)
varchar2 struct
varalpha struct
numeric char (restricted to digits)
date double

The structure of these records are defined in the database schema. For example, the 

following schem a entry:

Sea No FieldName EntName________ Type__ Leoott]________ Decimals-----------Index
> 1 nam e Employ u c char 30 0 no
> 2 spouse Em ployee vastint 0 4 no
> 3 em pNum Em ployee longint 0 0 no

1 In Z IM , char and alpha fields are identical, except for their treatm ent when sorting or indexing. For char, 
case is respected while sorting, while for alpha, case is ignored.
2 Variable length fields in Z IM  are implemented as the following C structure'

{
short length; 
char s trm g [x ];

where x is the maximum length of the field, as specified in the schem a entry. W hen the record is actually 
written to the database, the field is com pacted to the length specified in the structure.
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would translate into the tollowing record structure:

double
char
long

char
char
char

n u lH ;
nam e[30];
null2.
spouse:
null3;
em pNum ;

The 'null' fields are added by ZIM  to allow for the storage of explicit nulls for the field values of 

entities

Each Z IM  database file is assigned a unique four digit number when it is created by the 

DBMS. This number is included in the operating system filename; for example, in UNIX, a ZIM  

entity could be stored in the file 'z im 0 l0 5 \ This database file number is used by all of the PLI 

routines which operate on files. For example, to open a Z IM  database file using the PLI, the 

program must know its corresponding number.

Z IM  Multi-User Support

Support for concurrent access in ZIM  is quite high-level. Using the PLI, the programmer 

can perform the following functions: start a transaction, abort a transaction, and commit a 

transaction. Transactions may not be nested: multiple calls to the start transaction function results 

in only one transaction, which is terminated by the first call to either the abort or commit function. 

Two-phase locking is done implicitly by the transaction manager, so there is no programmer 

control over their placing. Tnere is also no control over the granularity of locks: they are 

maintained only at the page level. As pages are accessed during a insaction, they are locked 

automatically by transaction manager, and then released when the transaction either commits or 

aborts Deadlocks are indicated to the application program via an error return code, which may be 

returned by any function which modifies the database.
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More on Objectlve-C

Objective-C was described briefly in Chapter Two, as an example of an object-oriented 

language. Recall that it is a hybrid language. The object-onented methodology has been grafted 

onto the imperative C programming language. As a result, it lacks some of the elegance of the 

Smalltalk language. For example, not all data items in Objective-C are objects a typical program 

could include a mix of C primitive data types, C structures, and objects. Furthermore, while the 

message-passing computational metaphor is supported, C function calls are also allowed, and 

the two may be mixed freely. Objective-C is, in fact, a C superset. It is implemented as a front- 

end processor to the standard C compiler, along with some run-time support routines. As a 

result, it contains all of the functionality of the C language, with additional support for the object- 

oriented methodology.

Although Objective-C lacks some of the features of the Smalltalk system, it does share 

some of the same philosophies. For example, the Objective-C compiler comes with a class library 

which contains many of the basic tools for software development, such as implementations for 

sets, collections, arrays, points and rectangles. In keeping with the open-system concept of 

Smalltalk, all of the source code for these classes is proviutd, and they may be easily modified. 

Furthermore, the source code for the message-passing, memory management and run-time 

support routines is also provided.

The following sections identify certain aspects of the product that had an impact on the 

design and implementation of the object server. The topics addressed include: how objects are 

represented in the language, how memory is managed, how inheritance is supported, how the 

message-passing computational metaphor is implemented, and the persistent object mechanism  

provided with the language, and why they were insufficient for the requirements of ARTTisan
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Data Representation of Qbiects

Objects are added to the C language through the addition of one data type: the id. Id's 

are basically pointers to C structures which have been declared using the Objective-C compiler. 

They are unlike typical C pointers, however, in that they are essentially untyped. The type of an 

object is known only by itself. Using C pointers to reference objects directly has a number of 

advantages, it is simple to implement, all of the standard C pointer operations apply, and since 

there can only be one object per address, they fulfill the identity property of objects.

Using ordinary C pointers to refer to objects, however, poses a problem. In Smalltalk, 

references to an object are via object-oriented pointers (OOP's). Pointers to objects are actually 

indices into an object table. The contents of each table entry contains the actual location of the 

object m memory. Under this approach, there is a layer of indirection between the object and 

references to it All objects that refer to the same object share the same O O P to it. The main 

advantag* to this approach is that the become: message can be supported. This m essage can 

cause an object to be coerced to become an entirely new object, and all references to the 

previous obiect are automatically updated to reflect that change. The example shown in Figure 

6 1 illustrates the difference between the two approaches. Under the Objective-C approach, if 

Objectl ("Mom") and Object2 ("Dad") are instances of class Parent, then they may share a child 

named "Freddy". Smalltalk allows the same flavour of structure sharing, as is shown in the second 

box Since Smalltalk uses an object table, however, it extends this functionality to support the 

becom e: message. For example, say Objectt and Object2 want to swap their child with 

Object3's child. In other words, "Freddy" will become Object3's child, and "Barney" will become 

Obiectl and Object2's child. Unoor the Smalltalk approach, it is possible to update ail references 

to an object
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Figure 6.1: Using an Object Table
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uO b je c t3
"Freddy

S m allta lk  A pproach
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> >  -F r e d d y *  

" B a rn e y "

m
O b je c t2  E -

O b je c t3

S m allta lk  A pproach after O b ject3  becom e: O b je c tl

m
O b je c t2

O b je c t l

O b je c t3

" F re d d y "

" B a rn e y "
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using the become message. Under the Objective-C approach, each reference to the Object 3 

would have to be found and updated in order to safely change the value of the object. In general, 

this cannot be done.

Objects and C Structures

As indicated above, objects in Objective-C are basically C data structures which follow a 

format known to the Objective-C compiler. What form this structure takes may be best illustrated 

using an example. Let us define a relatively simple class:

= Person : Object {
char *namo; 
id spouse;

}

This declares (in Objective-C syntax) the class Person, which inherits from class Object. It has 

two instance variables, name and spouse, of which spouse is actually a reference to another 

object. An instance of this class would be made up of the following C structure:

{
SHR isa; 
char ‘ name; 
id spouse;
}

The important thing to note is the addition of the isa pointer. This is a pointer to a structure which 

is shared by all instances of a class. It is the isa pointer which allows the type of an object to be 

discerned at run-time The structure referred to by isa has the following format (PPI, 1986):
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Struct _SH A R E D  {
struct _S H A R E D  
Struct SH A R ED

*isa;
‘ clsSuper;
‘ cIsName;
‘ cIsTypes;

char
char
short
short

clsSizlnstance,
cisSizDict;
‘ cIsDispTable;struct SLT

The structure that represents an object includes all of the instance variables defined in its 

class definition, and in the definition of all of its superclasses. For example, instances of the 

following class:

The instance variables are in the order implied by the inheritance hierarchy.

Unfortunately, the object representation described above is not followed in all cases.

This is especially true of the object classes provided with the Objective-C compiler. These are 

referred to as the Foundation Classes by the Objective-C documentation. Classes whic'-: have a 

non-typical representation include:

• laA rray: The class IdArray implements a class where the objects referred to are accessed 

as indexed array elements, rather than as named instance variables. The structure of an 

IdArray insiance is therefore quite different from the normal case. For example, say you 

had an ldArray with ten elements, the resulting C structure would be:

= Employee : Fruit {
long empNum;

which inherits from the class Fruit, would have the following structure:

SH A R ED
ch-^r
id
long

isa;
‘ name;
spouse;
empNum;
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{
SH A R ED  ’ isa;
unsigned capacity;
id contents[10];
}

Actually, IdArray instances do not declare an array for thei* contents explicitly. The 

memory for the array is declared when the object is allocated from the heap. For example, 

the above structure would be created by simply allocating 48 bytes of storage1, and then  

using pointer offsets to index into the array of ids at the end of the structure.

• Cltn: The class Cltn (Collection), and its sub classes, such as Set, Bag, OrdCltn, Stack, 

and Dictionary provide the various message protocols to implement these well-known  

data abstractions. They all maintain the objects that they associate in instances of the 

class IdArray. This, in itself, does not pose a problem. Unfortunately, though, these 

classes all violate the encapsu'ation of the IdArray instance that they reference. For 

example, rather than sending a message to obtain the ith element of the array, they use 

offsets to point directly ir.to the array.

• String: The class String is similar to IdArray, in that its instances allocate an area of 

storage which is not a nj. ied instance variable, in this case, however, it is characters 

which are being stored, rather than ids.

• R ectangle: The class Rectangle has an implementation which defies logic. Essentially, 

a rectangle is represented as two Point objects: origin and corner. However, rather than 

implementing the class so that it uses instances of Point in a normal fashion, the points

1 The number of bytes is calculated as follows:
isa pointer ■ 4
capacity  -  4
contents 10@ 4 ■ 4Q

48
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are embedded as structures directly in the Rectangle instance. For example, a 

reasonable implementation would have defined Rectangles as follows:

R ectan g le : Object {
id origin, 

corner;
}

where origin and com er would be instances of class Point. Instead, Rectangles are 

implemented as follows:

Rectangle : Object {
S H A R ED *isa;
SH A R ED * is a l;
int originX,

originY;
S H A R ED *isa2;
int cornerX,

cornerY;
}

The two extra SH A R ED  references are initialized to the Point class object.

Violating Encapsulation

O ne of the key concepts in object-oriented programming is that the state of an object is 

encapsulated. That is, an object may only be manipulated using the operations that it provides. 

Objective-C allows the programmer to get around this: objects can have their contents accessed 

directly, as an ordinary C structure. This is not an oversight in the design of the language; it was 

built into the Objective-C compiler as a feature to allow greater run-time efficiency for those pieces 

of an application which need it. The execution speed improvement comes from using C function 

calls instead of m essage sends, and accessing the contents of an object using pointers instead 

of messages. However, the dangers of violating encapsulation must be weighed agains* these 

greater efficiencies.
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In order to gain access to the internal representation of objects of a certain class, the 

application program must specify a C data type which matches the definition of that class. To 

facilitate this process, Objective-C provides the compiler directive @ defs(). For example, a 

programmer wanted to manipulate instances of the class Person. The following statement would 

define the C  data type required:

typedef struct { @ defs(P erson)} PER S O N _TY P E ;

Then, by casting references to instances of Fruit to pointers of type PER S O N _TY P E , the 

internal representation of Persons may be inspected and modified using ordinary C  pointer 

manipulations. For example, the program could include the following statement:

((P E R S O N _TY P E  *)aPerson)->nam e = "Fred"; 

where aPerson is an instance of class Person.

Not only does Objective-C allow the application developer to violate encapsulation, the 

Foundation Classes regularly violate this principle, as mentioned in the previous section. For 

example, the classes which implement the various specializations of collections (stacks, sets, 

ordered collections, etc.) maintain their contents as instances of class IdArray. IdArrays are arrays 

of pointers to objects. A strictly object-oriented implementation of these collection classes would 

require that any manipulations of their contents would be done using the message protocol of the 

class IdArray. Unfortunately, this was not done. The collection classes use all of the various 

pointer manipulation tncks available in the C language to access their contents. Encapsulation 

was violated in order to gain some efficiency.

Memory Managem ent

The objects which represent both classes and their instances are really nothing other 

than C structures. However, there is a difference in how memory for the two is allocated. Class
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objects (referred to as factory objects in Objective-C documentation) are allocated statically, at 

compile-time. Their addresses are used to build a class table for the executable image, which is 

used by the language’s run-time system.

Instances are allocated at run-time from the heap, using the standard C memory functions 

alloc and dealloc. There is, however, two layers of abstraction built around these calls. From the 

users' point of view, the first layer is a m essage protocol, implemented by class Object, which 

provides the basic memory operations to the developer. This m essage protocol uses the class 

method n e w , which allocates new instances of a class, and the instance method free, which 

deallocates an object. Note that there is no garbage collection in Objective-C. Objects which are 

no longer needed must be identified and returned to the heap explicitly by the programmer.

Since it is not possible to know a priori the location of all references to an object, it is very easy to 

leave dangling pointers' to objects when they are freed. In order to help identify such bugs, 

when an object is freed, the Objective-C memory m anagem ent routines set the object's isa 

pointer to nil before returning the object to the heap. The m essage-passing routines will raise an 

error if any message is sent to an object with a nil isa. Unfortunately, this will not help if the 

memory returned to the heap when the object was freed has been re allocated before the 

offensive message send. Under this scenario, bizarre and catastrophic results are to be 

expected .

The m essage protocol for memory management calls a number of functions which are part 

of the Objective-C run-time support library. These functions: _alloc(), _realloc(), and _dealloc(), 

are not called directly. Instead they are called through pointers to them. For this reason, these 

function are generally referred to as (*_alloc), (*_realloc) and (*_dealloc). The names of the 

functions themselves remain hidden. As a result, it is straightforward to replace the memory
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m anagem ent provided with the language with a new set of functions, which presumably extend  

their functionality.

The M essaoe-Passino Mechanism

Objective-C implements the message-passing computational metaphor using a 

combination of compile-time and run-time facilities. W hen Objective-C programs are compiled, 

the methods defined by each class are transformed into ordinary C functions. For example, say 

that the class Person described above has a method defined as:

-name:(char *)aNam e { 
name = aName; 
return self;

}

This method woi.id be compiled to a C function which looks like:

(char *)_l_Fruit(self, selector, aNam e) 
id self; 
char ‘ selector; 
char ‘ aName;

{
self->name = aName; 
return self;

}

The compiler maintains a table which maps the <c!ass, message selector> pair to the the correct 

function.

M essage sends are enclosed in brackets []. These are recognized by the compiler and 

translated into C function calls to either _m sg() or _m sgSuper(). The arguments to these 

functions are the object id receiving the m essage, the m essage selector, and the arguments to 

the message itself. The C definitions of these functions are as follows:
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(id)_msg(receiver, selector )
id receiver;
S E L  selector;

(id)_msgSuper(class, selector )
SH R class;
S E L  selector;

where indicates the additional param eters to the method itself whose number and type vary. 

For exam ple, the m essage send:

[aPerson name: "Fred”]; 

would compile to the following function call:

_m sg(aFruit, "name:", "Fred”);1

The _m sg() function provides the basic m essage sending mechanism. It takes the 

receiver of the m essage, along with the m essage selector, and looks up the address of the 

correct function. Control is turned over to that routine, without modifying the stack. The  

_m sgSuper() function is similar to _m sg(), but it provides support for messages to super. 

M essages to super are treated as a special case, since by definition they can only be called from 

within an instance method. As a result, self is known to be at a certain location in the caller’s stack 

frame.

Obviously, since a m essage send results in a search, (which may be proportional to the 

depth of inheritance) and the overhead of several function calls, they are more expensive than 

an ordinary function call. They are estimated to be 2 to 2 .5 times as expensive as a function call 

(Cox, 1986). The m essage kernel has a number of features designed to improve execution 

speed. The first of these is that the _m sg() and _m sgSuper() functions are actually implemented

The selector passed to the _m sg and _m sgSuper function is a pointer to the unique character string 
contained in the m essage table maintained for each class. This allows the method lookup routines to use an 
ordinary pointer com parison (»« ) to find tne im plementation, rather than a more expensive string 
com parison (strcmp).
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in assembler, to ensure that they are executing as quickly as possible. The second is that they 

maintain a cache of the most recently called methods. The cache is maintained as a hash table, 

keyed on the <class, message selectors pair, which has two fields. The first is a marker which 

represents the pair, and the second is the address of the function which implements it. For each 

message that is sent, the hash value is calculated, and the marker is checked to ensure that it 

matches the current pair. If it does, it is immediately branched to; if it does not, _msg() or 

_m sgSucer() calls the implementation lookup routine _msglmpFind(), and the implementation it 

returns is used to update that location in the hash table. For most applications, the cache hit ratio 

is 95%  (Cox, 1986).

The function _msglmpFind() has the following C declaration:

(IMP)
_msglmpFind(refSelf, els, selector) 
id * ref Self;
SHA RED *cls;
char ’ selector;

refSelf is a pointer to the object (self) that was originally passed to _msg(). More specifically, it is a

pointer to the location of self on the stack. Changing the value of refSelf to another object

therefore effectively changes the object which is being sent the message.

If no implementation can be found which matches the selector of the original message 

send, an error occurs. The error-handling mechanism works as follows; if _msglmpFind() cannot 

find a match for the <class, selector> pair passed to the routine, it sends the message 

"doesNotUnderstand: selector to the receiver of the message. The default mechanism  

provided by the class Object results in an fatal error, and the program terminates with a suitable 

message displayed to the user. In Smalltalk, this mechanism has been used by a number of 

researchers to provide support for persistent and distributed objects (McCullough, 1987),
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(Bennett, 1987), and (M errow and Laursen, 1987). The method “doesNotUnderstand: 

message'' has been modified to trigger a read to the object base, for exam ple, when a particular 

class of object receives a message. Unfortunately, this approach cannot be used with Objective- 

C. The reason lies in the different param eters to the doesNotUnderstand: method, 'n Object ive- 

C, alt that is passed is the m essage selector originally sent to the object. In Smalltalk, the entire 

m essage is passed. The m essage is an object which contains both the m essage selector and alt 

of the param eters passed with the selector. As a result, in the Smalltalk implementation, if the 

correct receiver object can be found by the doesNotUnderstand: method (by reading it from the 

object base, for exam ple), the original message can then be sent to it.

To illustrate the above, consider the following example. In both Smalltalk and Objective- 

C, you have implemented a class called NetworkServerObject, whose sole purpose is to forward 

any m essage its instances receive to som e Network object. The Network could be, for exam ple, 

a facility to support distributed objects. In Smalltalk, this would be a s*raightforward exercise. Just 

implement a doesNotUnderstand: method for class NetworkServerObject which looks like.

doesNotUnderstand: m essage
ANetwork perform: m essage selector

withArguments: m essage arguments

So, for exam ple, the m essage

aNtwkObj keyW ord l: parm l keyWord2: parm2. 

would be transparently forwarded to the Network object. In Objective-C, you have a problem  

Since all that is passed to the doesNotUnderstand: is the selector of the m essage (in this case  

"keyW ordl :keyWord2:"), the param eters are lost. They are som ewhere on the stack, but there is 

no m echanism  provided to the applications developer to access them easily.
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Just as it is possible to circumvent the encapsulation of objects in Objective-C, it is also 

possible to bypass the message-passing mechanism. This is done by acquiring the address of 

the C function which implements a method for a particular class. A message protocol for doing so 

is provided by the class Object. This can provide some performance improvements when the 

type of the objects to be addressed is known in advance, with the danger that bizarre results may  

occur if the function is called with another type of object.

Object Persistence Mechanisms Provided bv Obiective-C

Objects may be stored on disk using the AsciiFiler routines provided with the language. 

Under this approach, a complex object, and all of the objects reachable from it may be written out 

to an ascii file. The internal C representations of all of the object classes defined to the Objective- 

C compiler have a corresponding ascii representation that is known to the AsciiFiler class.

The protocol provided by the AsciiFiler is based on two messages: storeOn: and 

rcadFrom:. The storeOn: message takes a file name as its parameter, and when sent to a 

complex object, stores the graph of all objects reachable from in the specified file. The  

readFrom: m essage provides the opposite functionality, reading in an object graph from a 

specified file.

Why They Are Not Enough

If Objective-C already provides a method to save complex objects to disk, what is the 

motivation for creating an object server for the language? The following are the features which 

extending the language with database-like facilities is expected to provide:

• The granularity with which objects can be saved and restored is much finer. Under the 

AsciiFiler approach, only entire object graphs may be m ade persistent. Therefore, while
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large objects can be saved into the database, only those pieces which are actually being 

used by the application need to read into memory.

• Objects which are shared between a number of complex objects are stored only once, 

thus increasing the integrity of the persistent data. Under the AsciiFiler approach, it is 

possible to store separate copies, in a number of different files, of an object which is 

shared. This leads to the possibility of having inconsistent versions of the sam e logic il 

object stored in in different files. Basically, once an object has been written to disk using 

the AsciiFiler approach, it loses its property of identity. The object is only unique within 

the file in which it is stored, rather than being unique throughout the entire problem  

domain.

• Much of the work performed by the AsciiFiler is devoted to converting the format of the 

objects from their internal C representation to some ascii representation. This is avoidable 

using an object server which supports the primitive C data types.

• Indices on objects will speed their recovery from  th r object base. However, this causes a 

corresponding penalty when adding and updating objects, due to the overhead of 

maintaining the indices.

• An object server offers a number of database amenities such as: transactions, indexing 

and multi-user concurrency control. These will be required to support any CASE  

environm ent which intends to m eet the needs of developm ent team s, as opposed to 

individuals.

Linking C lasses with the Application

Ob|ective-C is a C super-set. Ultimately, the Objective-C code is changed to ordinary C 

statements and then compiled to an executable program. Like any other C program, an
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Objective-C application must have a function main()\ in addition, a table of all of the classes used 

by the application are required to support the run-time messaging kernel. A typical Objective-C  

program will therefore be made up of a number of files which specify the classes being 

implemented, and then one additional source file which declares main, and defines the class 

table. The class table maintains the static address of every „iass used by the application. In order 

to create this table, the classes which are being used by the application must be linked, and their 

locations added to the table during compile-time. Since the type of an object is not resolved until 

run-time, the compiler must be explicitly told which classes to link. There are two mechanisms 

provided by the Objective-C compiler to do this. These are the © req u ires  statem ent and the 

© classes  statement.

The © req u ires  statement is placed in the source code of a class definition and specifies 

the other classes which are to be used by the one being specified. The com piler will then ensure 

that the classes specified are made available for messaging. Any applications which include the 

class being defined will also include the classes mentioned in the © requ ires . For exam ple, if you 

were defining a class MyClass which was to send messages to the classes String, Dictionary and 

Set, the definition would look like:

© requ ired  String, Set, Dictionary;

= MyClass : Object
{list of instance variables)

The @ classes statement is placed in the sam e source code file that contains the function 

nia'n. The list of classes specified in the © c lasses  statement act as roots of class usage trees, 

wMch the compiler uses to build the class table. The compiler will link all of the classes specified in
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the list, their superclasses, and the classes which they directly use, as specified in their 

@ requires statement. For example, the statement @ classes(MyClass) would cause the classes 

MyClass, Object, String, Set, and Dictionary to all be included in the executable image.

6 .2 . The Object Server/Language Interface

In the previous chapter, the manner in which objects are represented in the database was 

described. However, since we are building an object server for the Objective-C language, the 

next questions are: how are persistent objects represented to the Objective-C application? In 

addition, how is the relationship between an object in memory, and its representation in the 

database maintained?

The design of the object server may be described largely in terms of the implementation 

of two classes: Proxy and ObjectManager. The Proxy class will be described in detail in the 

following section. The ObjectM anager provides the interface between object server and the 

Objective-C application. It maintains a cache of all of the persistent objects accessed by the 

application. It provides the capability to read and write persistent objects. In doing so, the 

ObjectM anager utilizes metadata which describes an object’s representation, both as a database 

record and an  Objective-C object. Iri general, it is responsible for communicating between the 

application and the ZIM  PLI routines which provide low level access to the object base. The 

O bjectM anager is described in detail in the following chapter.

Proxy Objects

Persistent objects in the object base are mapped to dynamic Objective-C objects using 

instances of the class Proxy. Proxies are placeholders which represent p< rsistent objects. Proxy 

objects are similar to the Agent objects described in (Purdy, Schuchardf and Maier, 1987). They 

are a packaging of the persistent object in the address space of the application; they provide for
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the caching of objects which have been accessed; and they provide a seamless integration of the 

application code and the object server.

Proxy objects provide locational transparency: the application program does not know if a 

persistent object is in memory or on disk. As a result, the programmer does tot have to deal with 

the problems of caching and communicating with the object server. When a message is sent to a 

Proxy object, the system is responsible for ascertaining whether the persistent object the Proxy 

represents is already in memory, reading it in if it is not, and then forwarding the message to the 

real object for execution. This occurs transparently to the application.

When an object is read from the object base, all instance variables which are themselves 

objects are initialized as instances of class Proxy. Note, however, that a persistent object has 

only one Proxy object within an application. Multiple references to the same persistent object 

point to the same Proxy object. The ObjectManager maintains a hash table of all of the active 

Proxies in order to provide this feature. The ObjectManager returns a Proxy for the object base 

root object when it is opened. Every object in the object base is reachable from this root.

A persistent object is read into memory when its Proxy object first receives a message. 

This process is illustrated in Figure 6.2 a & b. In this example (which is based on the previous 

example shown in Figure 5.2), the object representing Fred le'Janitor has been previously sent a 

message by the application. As a result, the object has been read into memory. Note that it is 

actually referenced via a Proxy object, which knows the value of Fred's database OID, and points 

to the object that represents Fred. Fred’s spouse instance variable also points to a Proxy 

instance. However, since no message has yet been sent to the object representing Molly 

le'Janitor, that Proxy object has nil as the value of its realObject. Once a message has been sent 

to Fred's spouse, Molly’s object is read into memory as well.
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The class Proxy has the following Objective-C definition:

= Proxy : Object {
double oid;
id realObject: 
char beenH ere;

}

W here oid contains the database surrogate for the persistent object; realObject contains the 

object being represented by the Proxy; and beenHere is used when creating graphs of 

persistent objects when writing them to the database. Note that the realObject variable is set to nil 

if the object has not been read into memory. Intuitively, Proxy objects are an <oid, object> pair. 

They maintain the mapping from the persistent object's database identifier, and the real object 

which it represents

The Proxy class has no instance methods. This is simiiarto the approach taken by (Purdy, 

Schuchardt and Maier, 1987). However, in their implementation, messages to Agent objects 

resulted in the doesNotUnderstand  message being invoked. In the approach taken here, the 

message-sending routines of the Objective-C language have been altered to intercept messages 

sent to Proxies. As a result, it is impossible for a Proxy to receive a message.
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Figure 6.2 a): Reading an Object (Before)

= Person : O bject { H Z IM  file 101 
char nam e[30);

i

= Em ployee : Person { / /  Z IM  file 102  
int em pNum ; 
id spouse;

}

Situation 1: The  object representing the em ployee Fred le'Janitor has been read in 
previously. At that tim e, its 'spouse' instance variab le  w as initialized to a  
Proxy object, w hose rea lO b ject pointer is nil, since Molly le'Janitor is still 
on disk. Note that Fred's object is referenced via a Proxy object as well

anEmp

(a  Proxy)

(an E m ployee)

2 2 2 2 .0  i 0 i

Fred le'Janitor 9 9 9

(a  P roxy)
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Figure 6.2 b): Reading an Object (After)

Situation 2: A  m essag e  ([spouse describe]) has b een  sent to Fred's 'spouse' 
instance variab le , and , as  a  result, M olly's Person object has been  read  in.

anEm p

(a  P ro xy )

(an  E m p lo yee )

(a  P ro xy ) 2222 .0101

111 1.01 02

Molly le 'Janitor

Fred le'Janitor 9 9 9

(a  P erson )

Intercepting Messages: Changes to the Objective-C Messaging Kernel

Recall from the previous chapter that in Objective-C, the methods which implement a 

class's protocol are compiled to ordinary C functions. W hen a m essage is sent at run-time, the 

messaging kernel looks up the address of the function which implements the method, and 

branches

to that location. The Objective-C messaging kernel is m ade up of three functions: _m sg(), 

_m sgSuper(), and _m sglm pFind(). Message sends in an Objective-C program compile to calls to 

either _m sg() o r_m sgS uper(). _m sg() and _m sgSuper() are responsible for finding the address 

of the function which implements the method, and branching to that location The most recently
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used methods are maintained in a cache shared by the two functions, which are written in 

assembler, if the method being called is not found in the cache, then _m sglm pRnd() is called to 

search for it. The value returned by _msglmpFind() is used by the calling function to update the

cache.

In order to meet the goal of locational transparency of persistent objects, a number of 

changes were made to the Objective-C message-passing kernel. Before describing those 

changes in detail, let us turn to the end-result; what happens when a message is sent to a 

persistent object? To aid us, let us extend the previous example using the classes Employee 

and Person. Let the class Person implement the following method:

-describe {
printf("%30s", name);

}

and the class Employee implement the following method:

-describe {
printf("%30s % dM, name, empNum);
[spouse describe];

}

What happens if the message ''describe" is sent to the (Proxy) object ’’anEmp" shown in Figure 

6.2? In other words, [anEmp describe] is performed. The sequence of events are as follows:

• First, it must be realized that the application does not have a handle on the persistent 

object directly. Instead, references to the persistent object are to its unique Proxy 

instance. AnEmp is pointing to a Proxy, rather than to an Employee. Note that since 

Proxies are objects, they all reference the same class object through their isa pointer. As
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a result, it is possible to quickly determine whether or not an object is a Proxy be 

examining its isa value.

• Message sends result in a call to the function _msg(). This routine checks if the object 

being sent the message is a Proxy by checking its isa pointer. If it is a Proxy, the routine 

_msglmpFind() is called immediately. If not, the regular messaging routine is continued 

with. In this case, since anEmp is a Proxy, the former case holds. Note that 

_msglmpFind() may be called to service messages to non-persistent objects as well.

• The first action done by _msglmpFind() is to check whether the object being sent the 

message is a Proxy object. Recall that _msglmpFind() has the following definition:

(IMP)
_msglmpFind(refSelf, els, selector) 

id ‘ refSelf;
SHA RED ‘ els;
char ‘ selector;

where refSelf is a pointer to the object (self) that was originally passed to _msg(). In this

case, (‘ refSelf) is anEmp, which is a Proxy object. If refSelf points to a Proxy object,

refSelf must be changed to the value of the Proxy's realObject. If realObject is ml, then

the ObjectManager must be called to read the object from the database. The actual code

is as follows:

if ((*refSelf)->isa ==_Proxylsa) {
if (((PROXY_TYPE*)(*refSelf))->realObject != nil)

(‘ refSelf) = ((PROXY_TYPE*)(*refSelf))->realObject;
else {

((PROXY_TYPE*)(*refSelf))->realObject -  
[ObjectManager get: (‘ refSelf));

(‘ refSelf) = ((PROXY_TYPE*)(*refSelf))->realObject;
}

}
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Note that refSelf is pointing to the location of the message receiver on the program stack. 

When the object pointed to by refSelf is altered, the receiver of the message has been 

altered. In this case, the Employee object referred to by anEmp is already in memory. As 

a result, the value of refSelf can be changed using one pointer manipulation. Access to 

persistent objects which have already been read is therefore quite efficient.

The implementation of the "describe" method for the Employee class is found, and a 

pointer to it is returned to the _msg() routine.

* _msg() takes the function address returned by _msglmpFind(), and branches directly to 

that location. In this case, first the C library function printf is performed, and then the 

message "describe" is sent to the Employee s spouse. The message-passing routine 

starts all over again. The process is identical to the one described above, with one 

notable exception. At the time of the message send, the Employee's spouse has not yet 

been read into memory. As a result, the ObjectManager is requested to do so. The value 

of the realObject instance variable of the spouse's Proxy is changed to point to the object 

read. Note that since each database object may have only one Proxy object within an 

application, this change is reflected by all other references to the spouse object, if any. 

Polymorphism and the Message Cache

The previous example may also be used to illustrate a subtle, but potentially dangerous 

facet of how messages to Proxies must be handled. Recall that the functions _msg() and 

_msgSuper() share a cache of all of the recently accessed methods. This cache is implemented 

as a hash table, whose key is the <class, selector> pair which uniquely identifies a method.

When the method is not found in the cache, the _.msglmpFind() routine is called, and the 

function address returned by it is used to update the cache slot.
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Consider what would happen if polymorphic behaviour w as expected of objects 

represented by Proxies, if the message cache was used as normal. Figure 6.3 illustrates the 

point. In the previous example, the "describe” message w as sent to the Proxy objects 

representing an Employee and a Person. Tho Employee's Proxy receives its message first. In 

the _m sg() function, the <class, selector> pair was <Proxy, ”describe">. Assume that the cache 

slot for that pair was empty, so the _msglmpFind() routine was called to look up the address of the 

implementation. The function address returned _msglmpFind{) was the method which actually 

matches the pair <Employee, "describe":*. Th^ address of that function was placed in the cache 

slot, and the method was then executed.

The "describe" instance method implemented by the Employee class sends the 

message "describe" to the spouse object which, in this case, is expected to be a Person. Note 

what would now happen in the _msg() function. Once again, _msg{) is called with the <class, 

selector> pair <Proxy, "describe":*. This time, however, a match is found in the cache, and that 

function is branched to. Unfortunately, the wrong function has just been called, since the 

implementation of "describe" for the Employee class was found, rather than the implementation 

for the Person class. Bizarre and dangerous results would result if this problem was not 

addressed.

!n Figure 6.3, then, we see the following:

• In situation (A) - which is the normal Objective-C situation - we see that the two classes 

Person and Employee each have their "describe" method placed in a separate slot in the 

m essage cache.
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• In situation (B) and (C), we have a more dangerous situation, since both the Employee 

and Person objects are, in fact, represented by Proxy objects. This confuses the normal 

message-passing and caching mechanisms.
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Figure 6.3: The Oblectlve-C Message Cache

O b jec tive -C  M essag e  Cache:

(A ) [aP erson  describe);
[anE m ployee describe);

C lass S e le c to r

P erson "d e s c rib e "

Em ployee "d e s c rib e "
- - -

- - -

_ 2 _ P e rs o n (s e lf , se lec to r)

_ 9 _ E m p lo y e e (s e lf . se lector)

(B ) [aP erso n  describe);
N ote  that aP erson  is actually a  Proxy object.

T h e  m essage "describe" has been sent to a Proxy representing a Person. The cache is 
updated  with the function address returned for the <Proxy, "describe"> pair.

C lass S e le c to r ’■_2_P erson (se lf, se lec to r)

P r o x y "d e s c rib e "

- - -

- - -

_ 9 _ E m p lo y e e (s e lf, se lector)

(C ) [an E m p lo yee  describe);
N ote  that anEm ployee is actually a Proxy object.

T h e  m essage "describe" has been sent to a Proxy representing an Em ployee. S ince a 
<P roxy, "describe"> pair is found in the cache, that function is execu ted  and an error 
results.

*_ 2 _ P e rs o n (s e lf , se lec to r)Class S e le c to r

P r o x y "d e s c rib e "

- - -

- - -

_ 9 _ E m p lo y e e (s e lf, se lec to r)
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In order to handle to handle this problem, the _m sg() function has been altered to identify 

m essages to Proxy objects. W hen such an occurrence is detected, the cache lookup code is 

bypassed. Instead, the _msg!mpFind() routine is called, and the control is turned over to the 

function address it returns. The return value of _m sglm pFind() is not used to update the cache, 

as is the normal case. As a result, messages to ’ordinary’ objects continue to utilize the message 

cache, while messages to persistent objects always require a call to _msglmpFind() in order to find 

ihe address of the specified method. This has performance repercussions, since the search 

undertaken by _m sglmpFind() may be proportional to the depth of the inheritance tree of the 

receiver object. An 'industrial strength' implementation could maintain a separate cache for Proxy 

object messages; or, alternatively, the <class, selector* pair used to hash into the cache could 

be created using the class of the realObject pointed to by the Proxy object.

The Dangers of Violating Encapsulation

One of the features of the Objective-C language is that it allows the violation of the 

encapsulation principle inherent in the coject-oriented paradigm. It is possible to get a handle on 

the internal state of an object directly. A purist approach, such as the one taken in the Smalltalk 

language, dem ands that all object manipulations be done using the operation provided by the 

object itself. With respect to the implementation of an object server for the language, this 

approach is a double-edged sword. On one hand, being able to violate encapsulation w as a great 

help in implementing the class Proxy. Since it is impossible to send a message to a Proxy object 

(all m essages are passed along to the persistent object represented by the Proxy), the only way 

for the object server implementation to modify or access Proxy objects was to do so directly. 

Essentially, Proxy objects are treated by the object server implementation much like a regular C 

structure.
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On the other hand, applications which insist on violating the encapsulation of persistent 

objects must be very careful, or disaster will result. Since references to persistent objects are 

done so via Proxies, any attempt in the application code to point directly to the instance variables 

of a persistent object must recognize the existence of Proxies, or it will be using incorrect offsets 

Instead of pointing to an object of class Employee, for exam ple, and offsetting to gain access to 

the em pNum  variable, the program would be pointing to a Proxy object, and the same offset 

would be pointing at the value of the ‘realObject’ instance variable within the Proxy.

Typically, when an Objective-C program violates the encapsulation of an object, it does 

so by casting the param eters of a method to be of the expected type. Figure 6 .4  provides an 

exam ple code fragm ent which shows how a method which violates the encapsulation of an object 

would have to deal with the Proxy interlace. This code would have to replicated in every method 

which attem pted to deal with objects directly.

Figure 6.4. Dealing With Proxies Explicitly_______________________________________

© requ ires  Som eClass, ObjectManager, Proxy; 
typedef struct { @ defs (P ro xy )} P R O XY_TYPE; 
typedef struct { @ de fs (S o m eC lass )} S O M E _T Y P E ;
// The method casts its param eter to be an instance of a specific class. 
-aM ethod:(SO M E_TYPE *)parm l {

/ /  First, check to see if the param eter is a Proxy object 
if {parml ->isa == Proxy) {

H Has the object been read from the object base?  
parm l = (P R O X Y .T Y P E  *)parm 1; 
if (p a rm l->realObject == nil)

parm l = (S O M E _T Y P E  *)parm l->realO bject; 
else { // Read the object into memory

parm l->realO bject = [ObjectM anager get: parm l]; 
parm l = (S O M E _T Y P E  *)parm 1->realObject;

}
}
r  Then the method may continue normally ... */
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7. The O bjectM anager

Any application which wishes to use the object server must link the Objective-C  class 

ObjectM anager. The O bjectM anager provides the major com ponents of the object server's 

functionality. These include:

• Transferring objects from memory to disk, and vice versa. In order to do this, the  

ObjectM anager accesses m etadata which describes the representation of objects.

• Caching objects which have been read from the database. The cache is maintained as a 

hash table.

• A m essage protocol which allows the application to start and end O bjectM anager 

sessions.

7.1. The Object Schem a

Before the inner workings of the O bjectM anager can be described, the concept of the  

object schem a must be explained. The object schema provides the 'data about the data' - or 

m etadata - that the system requires to manipulate the persistent objects.

The format of the m etadata required by the object server was largely motivated by the 

format maintained by ZIM . Recall that a Z IM  database schema is described largely in terms of the 

two entity sets: EntitySets and Fields. The object server schem a is described largely in term of 

two classes: Class and InstVar. How the object server metadata is used to maintain the ZIM  

database schem a is discussed at the end of the chapter.
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Defining a Class

The object server must maintain information which allows it to describe both the ZIM and 

Objective-C representation of an object. Since the ZIM  DBMS maintains records which are 

essentially C structures which have been written to disk, why are these representations different?

• ZIM  places a 'null' byte before the beginning of each field in the record. This is used by 

ZIM  applications to store explicit null values in the database. These null bytes must be 

removed upon reading the object from the database, and inserted when the object is 

written.

• Each instance in the object server must contain that object's OID. This value is kept in the 

first field in the record which represents the object in the database. When the object is 

read by an Objective-C application, this OID is used to find the object in the database. 

Once the object is read, the OID is maintained by the object's Proxy. It is not contained in 

the object itself.

• Objects in Objective-C have, as their first instance vanable, their isa pointer, isa points to 

the object's factory object. This pointer must be initialized when the object is read, and 

removed when the object is written.

• References to other objects are handled differently in the persistent and dynamic 

representations of the object. In Objective-C, object references are via pointers of type 

id. These require four bytes of memory. Persistent objects refer to each other via OIDs, 

which require eight bytes of storage. When an object is read, its references to other 

objects are represented by a Proxy instance. When an object is written, its references to 

other objects are represented by the O ID  stored within the Proxy.
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Recall that all objects are unique instances of some class. This means that the object 

server must know the classes that it is expected to maintain, and their format. To do so, the class 

Class is used. Instances of Class correspond one-to-one with the Objective-C classes for which 

the toolset designer wishes to maintain persistent instances. The class Class is itself an 

Objective-C class which is known to the ObjectManager. As we shall see, it is an example of a 

class which has several instance variables which are not persistent. It is defined as follows:

= Class : Object {
id name,

superclass, 
instVars, 
factoryObject, 
subclasses, 
dbSet, 
getSel, 
putSel; 

short classNum;
}

Where the instance variables have the following meaning:

n a m e  - The String object which contains the name of the Class (ie. "Object").

s u p e r c la s s  - The Class object which specifies the class's superclass.

in s tV a rs  - The ordered collection of all cf the instance variables which make up the class.
The specification of the class InstVar will be described below.

factoryO bject- The location of the actual Objective-C factory object which is used to create new 
instances of the class. The factoryObject is not a persistent object, since it is 

only meaningful at run-time.

s u b c la s s e s  - The ordered collection of all of the class's subclasses.

d b S e t  - An instance of class DBSet, which is used to read and write instances of the
class to and from the underlying ZIM  database. dbSet is not a persistent

ob|ect, since it is only meaningful at run-time.

g e t S e I - The String object which represents the selector which is to be sent to the Class
instance in order to have an object of that class read from the database. This is 

needed to handle the accessing of classes which are a special case.
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p u tS e l  • The String object which represents the selector which is to be sent to the Class
instance in order to have an object of that class written to the database. This is 

needed to handle the accessing of classes which are a special case.

c la s s N u m  - The ZIM file number of the database file which contains the class. All instances
of the persistent class are held in this file.

The class InstVar is crucial to understanding the object schema. Class objects use 

InstVars to describe both the persistent and dynamic representation of their instances. The 

implementation of InstVar is as follows:

= InstVar: Object {
id name,

partOf Class:
int type:
BOOL index,

persistent:
short length;

}

Where the instance variables have the following meaning:

n a m e  - The String object which contains the name of the InstVar (ie. "name").

p a r tO fC la s s  - The instance of Class which this instVar is part of.

t y p e  - An enumerated type which indicates the data type of the instance variable
(ie. "DBJD", "D B JN T”, "DB_DOUBLE", ...).

in d e x  - A Boolean variable which indicates whether or not this variable has a ZIM index
based on its value.

p e r s is te n t  - A Boolean variables which indicates whether or not this variable is persistent.
For example, in the class Class, dbSet would have a value of NO, while 

name would have a value of YES.

le n g th  - Used to indicate to ZIM how long a character array instance variable is

S u p p o rtin g  In h e r ita n c e

The inheritance tree of an object class is described explicitly in the metadata through the 

Class instance variable superclass. At the root of the class hierarchy is the clas* Object, which has
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a superclass of nil. Each Class maintains an ordered collection of the Classes which inherit from it. 

Thus the superclass and subClass links define the inheritance hierarchy An exam ple inheritance 

hierarchy implemented in this fashion is shown in Figure 7.1. Each Class object maintains an  

ordered collection of its instance variables. It should be noted that the Class Object defines the 

instance variable "oid". Since all objects inherit from Object, this ensures that all persistent 

objects have this instance variable defined.

There is a m essage protocol to query a  Class object about its instance variables, m ade up 

of two m essages:

• yourlnstVars  returns the instance variables specified for this class. It ignores a y instance 

variables defined in its superclasses. For exam ple, the Person class object would  

respond to this m essage with a collection containing the InstVar instances for “nam e” 

and "spouse". The Em ployee Class object would return a collection containing only the  

InstVar instance for "empNum".

• instVars  returns all of the instance variables defined for a  class, including those defined in 

its superclasses. It is implemented in terms of yourlnstVars. The array of InstVars 

returned has the superclass's instance variables first. For exam ple, the Employee class 

would respond with a collection containing the InstVar instances for "oid", "name", 

"spouse", and "empNum".

For exam ple, the instVars message would be used to get the list of instance variables which fully 

describe an object when reading it from the object base. The yourlnstVars m essage could be 

used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

132

Figure 7.1: Supporting Inheritance

=  Person : O b jec t { / /  Z IM  file 101 
char n am e[30 j;

}

= E m p lo yee  : P erson  { / /  Z IM  file 102  
int em pN um ; 
id spouse;

}

Object

aPerson & m 1 02

Employee
-  ! • 10 5

oid

name

empNum •

spouse

---------------► superclass

'fc ^ ■m subclass

------------- ► partOfClass (for instance variables)

............... - ► instance variable
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in constructing a browser for the object schema, where you would wish to deal with only the 

instance variables defined in a particular class.

Metadata Access

The object schema is read from the object base by the ObjectManager in response to the 

open message. There are several implementation details to note regarding how this is 

performed:

• The code to read the object schema doe. not utilize the normal ObjectManager methods 

for reading objects, since that code relies on the metadata. You cannot use the metadata 

to read the metadata. Note that this does not imply that the object schema may not be 

manipulated by applications which use the object server. An example of such an 

application is the Browser described in the following chapter.

• The Class and InstVar instances which make up the object schema are not represented by 

Proxy objects within the ObjectManager. It has a direct handle on the persistent objects. 

This is safe since the ObjectManager never modifies the metadata. The Ciass and InstVar 

instances which are read when the ObjectManager is opened are discarded when it is 

closed. By allowing these objects to be handled directly by the ObjectManager, 

performance gains are realized, since messages to non-Proxy objects use the message 

cache.

• The root of the inheritance hierarchy is the class Object. This object has one special 

property that is hard-wired into the system: it has an Object Identifier (OID) of zero (0 )1.

1 Actually, it has an O ID  of 0.0104, where 104 is the classNum of the class Class.
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This allows the ObjectManager initialization code to read in that object from the database 

directly, and then read all of Object’s subclasses recursively.

7 .2 . An Objective-C Protocol for the ZIM PLI

The ZIM  PLI provides a number of C functions which may be used to access, add, 

change and delete records and index entries in Z IM  database files1. Since all of the instances of 

an class are maintained in the same ZIM  database file, these operations are the equivalent to 

adding, changing and deleting instances of classes.

Access to the database files is provided by two abstractions: the ZIM  entity set (ZESET), 

and the ZIM  index '7 INDEX). A ZIM entity set is essentially a pointer to a C structure which 

provides a reference to the contents of a ZIM  database file. The pointer is returned by the PLI 

function which opens a file, and it is passed as a parameter to all of the PLI functions which 

manipulate the records in the file. The ZE S E T structure maintains a 'current record', which is 

essentially a pointer to a specific record in the file. This current record pointer may be moved 

explicitly using a 'get next record' function, or by using an index to locate a object which has a 

specific value for an instance variable.

Once an entity set has been opened, any : „:ees which exist may also be opened. A set

of PLI functions exists which will locate specific records in the file based on a specific value and a

Boolean operator (ie. <, <«, =, =>, > or !=). New records may be added, and existing ones 

updated or deleted. Note that it is up to the program modifying the record values to update any 

associated indices. Failure to perform these index updates correctly could result in the corruption 

of the database.

1 Additional PLI functions ara provided to support session control, security, and concurrency control
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There is one small, but important detail regarding the ZIM  PLI which must be made 

explicit. When using [he PLI it is recommended that the application open and close the entity 

sets and indices very frequently. A typical sequence would be:

open entity set 
open index1 
open index2 

locate a record using indexl 
modify the retrieved record 
write the updated record 

update indexl 
update index2 
cfose indexl 
close index2 

close entity set

It should be noted that closing the entity set has relatively little overhead associated with it. This is 

because closing the entity set dees not normally result in the closing of the underlying file. ZIM  

maintains a ring of recently accessed entity sets, and a file is physically closed only if necessary. 

The number of open files allowed is a parameter which the user may control. Closing entity sets 

and indices does cause any modified buffers to be flushed back to the disk file.

A ZIM  database file may be modelled effectively as a pointer to a ZE S E T structure, with an 

associated collection of indices. The class DBSet performs this role. Instances of class DBSet are 

created at run-time, as the different classes in the object schema are requested to read, write or 

modify their instances. The basic approach is that instances of DBSet are responsible for dealing 

with accesses to the ZIM  database. They retrieve, add, change and delete instances of classes 

in the database. However, it is the Class objects which are responsible for translating between  

the persistent and dynamic representations of the objects. There is one DBSet instance for each 

active Class. DBSet has the following structural definition:
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Figure 6.2 a): Reading an Object (Before)

= Person : Object { / /  Z IM  file 101 
char nam e[30];

}
-  Em ployee : Person { / /  Z IM  file 102  

int em pNum ;
id spouse;

}

Situation 1: The object representing the em ployee Fred le'Janitor has been read in 
previously. At that time, its 'spouse' instance variable w as initialized to a 
Proxy object, whose realO bject pointer is nil, since Molly le'Janitor is still 
on disk. Note that Fred's object is referenced via a Proxy object as well

anEmp

(a  Proxy)

(an Em ployee)

2222 .01 01

Fred le'Janitor 9 9 9

(a  Proxy)
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Figure 6.2 b): Reading an Object (After)

Situation 2: A  m essag e  ([spouse describe]) has been  sent to Fred 's 'spouse' 
instance variab le , and , as  a  result, M olly 's Person object has b een  read  in.

anEm p

(a  P ro xy )

(an  E m p lo yee)

(a  P ro x y ) 2 2 2 2 .0 1  01

M olly le’Janitor

Fred  le'Janitor 9 9 9

(a  P erson )

Intercepting Messages: Changes to the Objective-C Messaging Kernel

Recall from the previous chapter that in Objective-C, the methods which implement a 

class’s protocol are compiled to ordinary C functions. W hen a m essage is sent at run-time, the 

messaging kernel looks up the address of the function which implements the method, and 

branches to that location. The Objective-C  messaging kernel is m ade up of three functions 

_m sg(), _m sgSuper(), and _m sglm pFind(). M essage sends in an Objective-C program compile 

to calls to either _m sg() or_m sgSuper(). _m sg() and „m sgSuper() are responsible for finding the
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address of the function which implements the method, and branching to that location. The most 

recently used methods are maintained in a cache shared by the two functions, which are written in 

assembler. If the method being called is not found in the cache, then _msglmpFind() is called to 

search for it. The value returned by _msglmpFind() is used by the calling function to update the

cache.

In order to meet the goal of locational transparency of persistent objects, a number of 

changes were made to the Objective-C message-passing kernel. Before describing those 

changes in detail, let us turn to the end-result; what happens when a message is sent to a 

persistent object? To aid us, let us extend the previous example using the classes Employee 

and Person. Let the class Person implement the following method:

-describe {
printf("%30s", name);

}

and the class Employee implement the following method:

-describe {
printf(”%30s %d", name, empNum);
[spouse describe];

)

What happens if the message "describe" is sent to the (Proxy) object "anEmp" shown in Figure 

6.2? In other words, [anEmp describe] is performed. The sequence of evenis are as follows:

■ First, it must be realized that the application does not have a handle on the persistent 

object directly. Instead, references to the persistent object are to its unique Proxy 

instance. AnEmp is pointing to a Proxy, rather than to an Employee. Note that since 

Proxies are objects, they all reference the same class object through their isa pointer. As
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a result, it is possible to quickly determine whether or not an object is a Proxy by 

examining its isa value.

• M essage sends result in a call to the function _m sg0- This routine checks if the object 

being sent the message is a  Proxy by checking its isa pointer. If it is a Proxy, the routine 

_m sglm pFind() is called immediately. If not, the regular messaging routine is continued 

with. In this case, since anEm p is a Proxy, the former case holds. Note that 

_m sglm pFind() may be called to service messages to non-persistent objects as well.

• The first action done by _m sglm pFind() is to check w hether the object being sent the 

m essage is a Proxy object. Recall that _m sglm pFind() has the following definition:

where refSelt is a  pointer to the object (self) that was originally passed to __msg{). In this

case, (‘ refSelf) is anEmp, which is a Proxy object. If refSelf points to a Proxy object,

refSelf must be changed to the value of the Proxy's realObject. If realObject is nil, then

the O bjectM anager must be called to read the object from the database The actual code

is as follows:

if ((*refSelf)->isa == _Proxylsa) {
if (((PR O XY_TYPE*)(*refSelf))->realO bject != nil)

(‘ refSelf) = ((PR O XY_TYPE*)(*refSelf))->realO bject;
else {

((PR O XY_TYPE*)(*refSelf))->realO bject = 
[O bjectM anager get: ( ‘ refSelf)];

(‘ refSelf) = ({PR O XY_TYPE*)(*re fS elf))->realO bject;

(IMP)
_m sglm pFind(refSelf, els, selector)

id
S H A R E D
char

refSelf;
cts;
selector;
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Note that refSelf is pointing to the location of the message receiver on the program stack. 

W hen the object pointed to by refSelf is altered, the receiver of the message has been 

altered. In this case, the Employee object referred to by anEmp is already in memory. As 

a result, the value of refSelf can be changed using one pointer manipulation. Access to 

persistent objects which have already been read is therefore quite efficient.

The implementation of the "describe" method for the Employee class is found, and a 

cointer to it is returned to the _m sg() routine.

* _msg() takes the function address returned by _msglmpFind(), and branches directly to 

that location. In this case, first the C library function printf is performed, and then the 

message "describe" is sent to the Employee’s spouse. The message-passing routine 

starts all over again. The process is identical to the one described above, with one 

notable exception. At the time of the message send, the Employee’s spouse has not yet 

been read into memory. As a result, the ObjectManager is requested to do so. The value 

of the realObject instance variable of the spouse's Proxy is changed to point to the object 

read. Note that since each database object may have only one Proxy object within an 

application, this change is reflected by all other references to the spouse object, if any. 

Polymorphism and the M essage Cache

The previous example may also be used to illustrate a subtle, but potentially dangerous 

facet of how messages to Proxies must be handled. Recall that the functions _msg() and 

_ msgSuperj) share a cache of all of the recently accessed methods. This cache is implemented 

as a hash table, whose key is the <ciass, selector* pair which uniquely identifies a method.

When the method is not found in the cache, the _msgimpFind() routine is called, and the 

function address returned by it is used to update the cache slot.
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Consider what would happen if polymorphic behaviour w as expected of objects 

represented by Proxies, if the message cache was used as normal. Figure 6.3 illustrates the 

point. In the previous exam ple, the "describe” m essage was sent to the Proxy objects 

representing an Employee and a Person. The Em ployee’s Proxy receives its message first. In 

the _m sg() function, the <class. selector> pair was <Proxy, "describe":*. Assume that the cache 

slot for that pair was empty, so the _msglmpFind() routine was called to look up the address of the 

implementation. The function address returned by _m sglm pFind() w as the method which actually 

matches the pair <Em ployee, "describe";*. The address of that function w as placed in the cache 

slot, and the method w as then executed.

The "describe” instance method implemented by the Employee class sends the 

m essage "describe” to the spouse object vh ich , in this case, is expected to be a Person. Note 

what would now happen in the _msg() function. Once again, _m sg() is called with the <class, 

selector;* pair <Proxy, "describe”;*. This time, however, a match is found in the cache, and that 

function is branched to. Unfortunately, the wrong function has just been called, since the 

implementation of "describe” for the Employee class was found, rather than the implementation 

for the Person class. Bizarre and dangerous results would result if this problem was not 

addressed.

In Figure 6.3, then, w e see the following:

• In situation (A) - which is the normal Objective-C situation - we see that the two classes 

Person and Employee each have their "describe" method placed in a separate slot in the 

m essage cache.
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• In situation (B) and (C), we have a more dangerous situation, since both the Employee 

and Person objects are, in fact, represented by Proxy objects. This confuses the normal 

message-passing and caching mechanisms.
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Figure 6.3: The Obiectlve-C Message Cache

Objective-C Message Cache:

(A) [aPerson describe]; 
[anEmployee describe];

Class Selector
Person "describe"
Employee "describe"

- - -
- - -

_2_Person(self, selector)

_9_Employee(self, selector)

(B) [aPerson describe];
Note that aPerson is actually a Proxy object.

The message "describe* has been sent to a Proxy representing a Person. The cache is 
updated with the function address returned for the <Proxy, "describe"> pair.

Class Selector _ _________   selector)

Proxy "describe"
- - *

- - -

_9_Em ployee(self, selector)

(C) [anEmployee describe];
Note that anEmployee is actually a Proxy object.

The message "describe" has been sent to a Proxy represen n Employee. Since a 
<Proxy, "described pair is found in the cache, that function .s executed and an error 
results.

»_2_Person(selft selector)
Class Selector
Proxy "describe"

- - -

- - -

9_Employee(self, selector)
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In order to handle to handle this problem, the _msg() function has been altered to identify 

messages to Proxy objects. W hen such an occurrence is detected, the cache lookup code is 

bypassed. Instead, the _msglmpFind() routine is called, and the control is turned over to the 

function address it returns. The return value of _msg!mpFind() is not used to update the cache, 

as is the normal case. As a result, messages to 'ordinary' objects continue to utilize the message 

cache, while messages to persistent objects always require a call to _msglmpFir,J() in order to find 

the address of the specified method. This has performance repercussions, since the search 

undertaken by _msglmpFind() may be proportional to the depth of the inheritance tree of the 

receiver object. An 'industrial strength' implementation could maintain a separate cache for Proxy 

object messages; or, alternatively, the <class, selectors pair used to hash into the cache could 

be created using the class of the realObject pointed to by the Proxy object.

The Dangers of Violating Encapsulation

One of the features of the Objective-C language is that it allows the violation of the 

encapsulation principle inherent in the object-oriented paradigm. It is fxsssible to get a handle on 

the internal state of an object directly. A purist approach, such as the one taken in the Smalltalk 

language, demands that all object manipulations be done using the operation provided by the 

object itself. With respect to the implementation of an object server for the language, this 

approach is a double-edged sword. On one hand, being able to violate encapsulation was a great 

help in implementing the class Proxy. Since it is impossible to send a message to a Proxy object 

(all messages are passed along to the persistent object represented by the Proxy), the only way 

for the object server implementation to modify or access Proxy objects was to do so directly. 

Essentially. Proxy objects are treated by the object server implementation much like a regular C 

structure.
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On the other hand, applications which insist on violating the encapsulation of persistent 

objects must be very careful, or disaster will result. Since references to persistent objects are 

done so via Proxies, any attempt in the application code to point directly to the instance variables 

of a persistent object must recognize the existence of Proxies, or it will be using incorrect offsets. 

Instead of pointing to an object of class Employee, for exam ple, and offsetting to gain access to 

the em pNum  variable, the program would be pointing to a Proxy object, and the sam e offset 

would be pointing at the value of the 'realObject' instance variable within the Proxy.

Typically, w hen an Objective-C program violates the encapsulation of an object, it does 

so by casting the param eters of a method to be of the expected type. Figure 6 .4 provides an 

exam ple code fragm ent which shows how a method which violates the encapsulation of an object 

would have to deal with the Proxy interface. This code would have to replicated in every method 

which attem pted to deal with objects directly.

Figure 6.4: Dealing With Proxies Explicitly_______________________________________

© req u ires  Som eClass, ObjectM anager, Proxy; 
typedef struct { @ d e fs (P ro xy )} P R O X Y _TY P E ; 
typedef struct { @ d e fs (S o m eC lass )} S O M E _T Y P E ;
// The method casts its param eter to be an instance of a  specific class. 
-aM ethod :(S O M E _TY P E  *)parm1 {

II First, check to see if the param eter is a Proxy object 
if (parm1->isa == Proxy) {

// Has the object been read from the object base?  
parm l = (P R O X Y _TY P E  *)parm 1; 
if (parm l->realO bject == nil)

parm l = (S O M E _T Y P E  *)parm 1->realObject; 
else { // Read the object into memory

p arm l->rea lO bject = [O bjectM anager get: p arm l], 
parm l = (S O M E T Y P E  *)parm l->realO bject;

}
}
r  Then the method may continue normally.... */
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7. The ObjectManager

Any application which wishes to use the object server must link the Objective-C class 

ObjectManager. The ObjectManager provides the major components of the object server's 

functionality. These include:

• Transferring objects from memory to disk, and vice versa. In order to do this, the 

ObjectManager accesses metadata which describes the representation of objects.

• Caching objects which have been read from the database. The cache is maintained as a 

hash table.

• A message protocol which allows the application to start and end ObjectManager 

sessions.

7.1. The Object Schema

Before the inner workings of the ObjectManager can be described, the concept of the 

object schema must be explained. The object schema provides the ’data about the data' - or 

metadata - that the system requires to manipulate the persistent objects.

The format of the metadata required by the object server was largely motivated by the 

format maintained by ZIM. Recall that a ZIM database schema is described largely in terms of the 

two entity sets: EntitySets and Fields. The object server schema is described largely in term of 

two classes: Class and InstVar. How the object server metadata is used to maintain the ZIM  

database schema is discussed at the end of the chapter.
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Defining a Class

The object server must maintain information which allows it to describe both the ZIM and 

Objective-C representation of an object. Since the ZIM  DBMS maintains records which are 

essentially C structures which have been written to disk, why are these representations different?

• ZIM  places a 'null' byte before the beginning of each field in the record. This is used by 

ZIM  applications to store explicit null values in the database. These null bytes must be 

removed upon reading the object from the database, and inserted when the object is 

written.

• Each instance in the object server must contain that object's OID. This value is kept in the 

first field in the record which represents the object in the database. When the object is 

read by an Objective-C application, this O ID is used to find the object in the database 

Once the object is read, the OID is maintained by the object's Proxy. It is not contained in 

the object itself.

• Objects in Objective-C have, as their first instance variable, their isa pointer. Isa points to 

the object's factory object. This pointer must be initialized when the object is read, and 

removed when the object is written.

• References to other objects are handled differently in the persistent and dynamic 

representations of the object. In Objective-C, object references are via pointers of type 

id. These require four bytes of memory. Persistent objects refer to each other via OIDs, 

which require eight bytes of storage. When an object is read, its references to other 

objects are represented by a Proxy insiance. When an object is written, its references to 

other objects are represented by the O ID  stored within the Proxy
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Recall that all objects are unique instances of some class. This means that the object 

server must know the classes that it is expected to maintain, and their format. To do so, the class 

Class is used. Instances of Class correspond one-to-one with the Objective-C classes for which 

the toolset designer wishes to maintain persistent instances. The class Class is itself an 

Objective-C class which is known to the ObjectManager. As we shall see, it is an example of a 

class which has several instance variables which are not persistent. It is defined as follows:

= Class : Object {
id name,

superclass, 
instVars, 
factoryObject, 
subclasses, 
dbSet, 
getSel, 
putSel; 

short classNum;
}

W here the instance variables have the following meaning:

n a m e  - The String object which contains the name of the Class (ie. "Object"),

s u p e r c la s s  - The Class object which specifies the class's superclass.

in s tV a rs  - The ordered collection of all of the instance variables which make up the class.
The specification of the class InstVar will be described below.

fac to ryO b jec t- The location of the actual Objective-C factory object which is used to create new  
instances of the class. The factoryObject is not a persistent object, since it is 

only meaningful at run-time.

s u b c la s s e s  - The ordered collection of all of the class's subclasses.

d b S e t  - An instance of class DBSet, which is used to read and write instances of the
class to and from the underlying ZIM  database. dbSet is not a persistent object, 
since it is only meaningful at run-time.

g e t S e l  - The String object which represents the selector which is to be sent to the Class
instance in order to have an object of that class read from the database. This is 
needed to handle the accessing of classes which are a special case.
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p u tS e l  - The String object which represents the selector which is to be sent to the Class
instance in order to have an object of that class written to the database. This is 
needed to handle the accessing ot classes which are a special case.

c la s s N u m  - The ZIM  file number of the database file which contains the class. All instances
of the persistent class are held in this file.

The class InstVar is crucial to understanding the object schema. Class objects use 

InstVars to describe both the persistent and dynamic representation of their instances. The 

implementation of InstVar is as follows:

= InstVar: Object {
id name,

partOfClass;
int type;
B O O L index,

persistent:
short length;

}

W here the instance variables have the following meaning:

n a m e  - The String object which contains the name of the InstVar (ie. "name").

p a r tO fC la s s  - The instance of Class which this instVar is part of.

t y p e  - An enumerated type which indicates the data type of the instance variable
(ie. "DBJD", "DBJNT", "D B JXD U B LE",...).

in d e x  - A Boolean variable which indicates whether or not this variable has a ZIM index
based on its value.

p e r s is te n t  - A Boolean variables which indicates whether or not this variable is persistent.
For example, in the class Class, dbSet would have a value of NO, while name 
would have a value of YES.

le n g th  - Used to indicate to ZIM how long a character array instance variable is.

S u p p o rt in g  In h e r ita n c e

The inheritance tree of an object class is described explicitly in the metadata through the 

Class instance vanable superclass. At the root of the class hierarchy is the ciass Object, which has
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a superclass of nil. Each Class maintains an ordered collection of the Classes which inherit from it. 

Thus the superclass and subClass links define the inheritance hierarchy. An exam ple inheritance 

hierarchy implemented in this fashion is shown in Figure 7.1. Each Class object maintains an  

ordered collection of its instance variables. It should be noted that the Class Object defines the  

instance variable "oid". Since all objects inherit from Object, this ensures that all persistent 

objects have this instance variable defined.

There is a message protocol to query a Class object about its instance variables, made up 

of two messages:

• yourlnstVars  returns the instance variables specified for this class. It ignores any instance 

variables defined in its superclasses. For exam ple, the Person class object would 

respond to this m essage with a collection containing the InstVar instances for "nam e” 

and "spouse”. The Em ployee Class object would return a  collection containing only the  

InstVar instance for "empNum".

• instVars returns all of the instance variables defined for a class, including those defined in 

its superclasses. It is implemented in terms of yourlnstVars. The array of InstVars 

returned has the superclass's instance variables first. For exam ple, the Employee class 

would respond with a collection containing the InstVar instances for "oid”, "name", 

"spouse", and "empNum".

For example, the instVars message would be used to get the list of instance variables which fully 

describe an object when reading it from the object base. The yourlnstVars m essage could be
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Figure 7.1: Supporting Inheritance

= Person : Object { / /  Z IM  file 101 
char nam e[30];

}

= Em ployee : Person { / /  Z IM  file 102  
int em pNum ; 
id spouse;

}

Object

5Person

oid

1 02

name

Employee 1 0 5

<2empNum •

spouse

K & y;

-------------- ► superclass

^ ^ ^ ^ subClass

-------------► partOfClass (for instance variables)

.............. > instance variable
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used in constructing a browser for the object schema, where you would wish to deal with only the 

instance variables defined in a particular class.

Metadata Access

The object schema is read from the object base by the O bjectM anager in response to the 

open  message. There are several implementation details to note regarding how this is 

performed:

• The code to read the object schema does not utilize the normal ObjectM anager methods 

for reading objects, since that code relies on the m etadata. You cannot use the metadata 

to read the metadata. Note that this does not imply that the object schema may not be 

manipulated by applications which use the object server. An exam ple of such an 

application is the Browser described in the following chapter.

• The Class and InstVar instances which make up the object schem a are not represented by 

Proxy objects within the ObjectManager. It has a direct handle on the persistent objects. 

This is safe since the ObjectM anager never modifies the metadata. The Class and InstVar 

instances which are read when the ObjectM anager is opened are discarded when it is 

closed. By allowing these objects to be handled directly by the ObjectM anager, 

performance gains are realized, since messages to non-Proxy objects use the m essage  

cache.

• The root of the inhentance hierarchy is the class Object. This object has one special 

property that is hard-wired into the system: it has an Object Identifier (O ID) of zero (0 )1.

1 Actually, it has an O ID  of 0 .0104 , where 104 is the classNum of the class Class.
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This allows the ObjectManager initialization code to read in that object from the database 

directly, and then read all of Object's subclasses recursively

7 .2 . An Objective-C Protocol for the ZIM PLI

The Z IM  PLI provides a number of C functions which may be used to access, add, 

change and delete records and index entries in Z IM  database files1. Since all of the instances of 

an class are maintained in the same ZIM  database file, these operations are the equivalent to 

adding, changing and deleting instances of classes.

Access to the database files is provided by two aostractions: the ZIM  entity set (ZESET), 

and the Z iM  index (Z IND EX). A ZIM  entity set is essentially a pointer to a C structure wnich 

provides a reference to the contents of a ZIM  database file. The pointer is returned by the PLI 

function which opens a file, and it is passed as a param eter to all of the PLI functions which 

manipulate the records in the file. The Z E S E T  structure maintains a 'current record', which is 

essentially a pointer to a specific record in the file. This current record pointer may be moved 

explicitly using a 'get next record’ function, or by using an index to locate a object which has a 

specific value for an instance variable.

Once an entity set has been opened, any indices which exist may also be opened. A set 

of PLI functions exists which will locate specific records in the file based on a specific value and a 

Boolean operator (ie. <, <=, =, =>, > or !=). New records may be added, and existing ones 

updated or deleted. Note that it is up to the program modifying the record values to update any 

associated indices. Failure to perform these index updates correctly could result in the corruption 

of the database.

1 Additional PLI functions are provided to support session control, security, and concurrency control
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There is one small but important detail regarding the ZIM  PLI which must be made 

explicit. W hen using the PLI, it is recommended that the application open and close the entity 

sets and indices very frequently. A typical sequence would be:

open entity set 
open indexl 
open index2 

locate a record using indexl 
modify the retrieved record 
write the updated record 

update indexl 
update index2 
close indexl 
close index2 

close entity set

It should be noted that closing the entity set has relatively little overhead associated with it. This is 

because closing the entity set does not normally result in the closing of the underlying file. ZIM  

maintains a ring of recently accessed entity sets, and a file is physically closed only if necessary. 

The number of open files allowed is a parameter which the user may control. Closing entity sets 

and indices does cause any modified buffers to be flushed back to the disk file.

A ZIM  database tile may be modelled effectively as a pointer to a ZE S E T  structure, with an 

associated collection of indices. The class DBSet performs this role. Instances of class DBSet are 

created at run-time, a^ the different classes in the object schema are requested to read, write or 

modify their instances. The basic approach is that instances of DBSet are responsible for dealing 

with accesses to the ZIM database. They retrieve, add, change and delete instances of classes 

in the database. However, it is the Class objects which are responsible for translating between 

the persistent and dynamic representations of the objects. There is one DBSet instance for each 

active Class. DBSet has the following structural definition:
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D B S e t: Object { 
Z E S E T  
id 
int

}

id
char
int

‘ entitySet;
indexes;
mode.
status;
ClciSS*
buffer(M A X_BUFFER„SlZE];
buffLen;

Where the instance variables have the following meanings:

e n tltyS e t - A pointer to the ZIM  entity set structure returned when the ZIM  databast .ile is
opened.

Indexes - An ordered collection of the DBIndex instances for all of the indices for this file.
The class DBIndex is described below.

m ode - When a Z IM  database file is opened, its access mode must be specified. The
two possible values here are read-only or update.

status - Indicates whether the Z IM  database file is presently opened or closed.

class - The Class instance which owns this DBSet object.

bu ffer - The buffer into which records from the database are read

buf fLen - When writing a record, how many bytes are to be written. When reading a
record, how many bytes were read.

The "buffer" variable allocates a storage location through which all records pass when being read

or written.

The class DBIndex associates a Z IN D EX structure pointer with the instance variable upon 

which it is built. The structural definition of the class is as follows:
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Figure 7.2: Manipulating the ZIM Database from Objectlve-C

Class objects know how to read their instances from the object base. Interactions 
with the database are handled through DBSets and DBIndexes, which provide an 
Objective-C message protocol for dealing with Z IM  PLI sets and indices.

Class

DBSet
Indexes

DBIndex DBIndex

ZIM Database Set Index #1 Index #2

Current
Record
Pointer

B uffer
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DBIndex : Object {
ZINDEX 'index;
id ownerDBSet.

instVar; 
int keyType,

status, 
indexNum, 
keyLength, 
keyDecimals;

Where the instance variables have the following meaning:

index A pointer to the ZIM index structure which this DBIndex represents

ow nerD B Set - The DBSet object which owns this index.

In s tV a r  - The InstVar object which this index is built on.

k e y T y p e  - indicates which ZIM data type of the field on which the index is built.

s ta tu s  - Indicates whether the ZIM index is presently opened or closed.

in d e x N u m  - The index number of the this index in the ZIM entity set. For example, the
first index defined on an entity set would have an indexNum = 1

k e y L e n g th

k e y D e c im a ls  - The number of implied decimal places for a numeric data type.

- The length of the field on which this index is built. It has a value of zero for 
numeric data types.

Using this approach, a message protocol may then be implemented for the ZIM PLI 

functions which allows the instances of a class to be retrieved, created and modified using a 

DBSet object. DBSets are responsible for ensuring that whenever an operation is performed an a 

pers.jient object, all of the indices are updated correctly as well
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7.3. Initialization: The Database Root Object

Applications which use the ObjectManager do so by linking the ObjectManager class into 

the program. When the program is started, the class message open  is sent to the 

ObjectManager. This results in the following steps:

1) The ZIM  database is opened. This requires a call to a Z IM  PLI function.

2) Memory for the object cache is allocated. The object cache is described in detail in the 

following section.

3) The object schema is read. The schema is the class hierarchy of all of the persistent 

classes defined for this object base.

4) The database root object is read and its Proxy returned to the application.

The database root object requires some description. All objects in the object base are reachable 

from this object It is presently implemented as an instance of an ordered collection with two 

entries1 The first entry represents the root of the class hierarchy. The second entry is the root 

object for the objects in the application domain. Every object stored in the object base by the 

application is reachable from this root.

There are two constants defined to represent these entries in this root ordered collection 

They are SC HEM A and APPLICATION. Since most clients of the object server would be 

interested in only the application objects, the protocol for opening the ObjectM anager returns 

that object For example, for a program that was only interested in accessing the application data 

could use the following piece of code to retrieve the highest-level application object:

roctObject = [ObjectManager open];

1 There are no a p rio r i restrictions on the type of the root object, so the toolset developer is free to place 
any object there.
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The application root object may be changed by sending the message application Root: 1 to the 

ObjectManager. Changing the root object must be done with great care, since it is possible to 

inadvertently lose objects in the database if there is no path to them from the root.

As an example to illustrate the concept of a root object, recall the design of the ARTTisan 

tooiset described in Chapter One. The toolset is implemented as a number of integrated tools 

which manipulate designs which are represented as a hierarchy of notations. At the top level of 

the design hierarchy was a System object. Every object in the design is reachable from this 

System object. Given this, one can draw a number of different toolset implementation scenarios 

which would result in different objects at the root. In a single-user, one design per object base 

environment, the application root would be the System object itself In a single-user, multiple 

design environment, the application root would be a collection of System objects. Thus the root 

would be (for example) a Set, OrdCltn or Dictionary object. In a multi-user, multiple design 

environment, where each user owned a number of designs, the application root could be a 

collection of some hypothetical User objects, each of which, in turn, referenced a collection of 

designs owned by that user.

7.4. Records to Objects

Recall that objects are read from the database one at a time, as they receive messages 

The algorithm for converting from an object's persistent and dynamic representation is 

straightforward for most classes of objects. Simply allocate the memory for the object and then 

iterate through the instance variables of the object - whose type was described in the object

1 Som e exam ples or modifying the root objects:
(O bjectM anager applicationRoot: someObject], 
[O bjectM anager schemaRoot: someObject]; 
[O bjectM anager root: someOrdCltn];
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schema - copying the data from one representation to the other. There are only a few minor 

issues that must be addressed when implementing this approach:

• Allocating memory for an object in Objective-C typically involves sending the message 

new  to the class (factory) object of the desired type. When allocating the storage for a 

persistent object being read from the database this approach will not work in general. This 

is due to the fact that it is quite common to place initialization code in a class's new  

method. However, reading an object from the database is not the same as creating a new 

one. You are merely re activating an  existing object.

When a new object is created, the memory for it is allocated using the Objective- 

C kernel function (*_alloc) In order to ensure that no initialization code is being invoked, 

this function is called directly.

• The instance variables for an object include all of ‘hose defined by the object's 

superclasses as well.

■ Instance variables which are not persistent must be skipped over.

• Numeric data types (such as short, long, int, double, etc.) must be aligned at an even 

memory location in both the Objective-C and object server representations. This is a 

result of the S U N ’s machine architecture.

• ZIM  does not support all of C's numeric data types. It is restricted to short, long and 

double. Appropriate type casting must be used to ensure that the data is in the correct 

format in both representations.

• Instance variables of type id - which represent references to other persistent objects - 

are converted to Proxy objects when they are read and to O IDs when they are written. 

Note that there is only one Proxy object per persistent object. W hen an object is being
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Figure 7.3: Reading an Object
In this exam p le , the E m ployee object 9 9 9 9 .0 1 0 2  is read from the object base. It contains a 
re fe ren ce  to 7 7 7 .0 1 0 1 . If a  Proxy object for 777 .0101  a lready  exists, it is found in the 
object cach e , and its location becom es the value of the Em ployee 's  spouse variable. If a 
Proxy does  not a lready exist, one is created  with an O ID  of 7 7 7 .0 1 0 1 , it is added to the 
cache, and then it is assigned to the spouse variable.

= Person : 
char

}

= Em ployee  
int 
id

O bject { / / Z I M  file 101 
nam e[30];

Person { // Z IM  file 102  
em pNum ; 

spouse;

}

Object Base Representation
Z IM null bytes

Employee
oid

9 9 9 9 .0 1  0 2

nam e

F red  le 'Jan ito r

em pN um  spouse

1 2 3 7 7 7 .0 1  01

Proxy T a b le

7 7 7 .0 1 0 1 • ------

-
-

9 9 9 9 .0 1 0 2
-

Obiective-C Representation
•  - Ind icates pointers to other objects. 

T h e  isa pointers are  to the  
O b jec tive -C  factory object for 

that class.

£
^ Employee

lfia name  

i ) Fred

P r o x y

7 7 7 .0 1 0 1

Pro  xv

9 9 9 9 .0 1  0 2

e 'Jam tor

em pNum  spouse

1 2 3
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read, and one of its instance variables is being assigned a Proxy, the Proxy cache in the 

O bjectM anager is checked to see if that has already been created. For exam ple, (see 

Figure 7.3) say an Em ployee object is being read whose spouse is represented by the 

Object Identifier (O ID) 777.0101. First the cache is checked to see it a Proxy with that O ID  

has already been created. If it has, the spouse instance variable of the Objective-C  

representation of the object is assigned to the Proxy. If it has not, a new Proxy is created, 

with its O ID  initialized to 777 .0101, the Proxy is added to the cache, and then the 

spouse variable for the object is assigned to the new Proxy.

To illustrate what occurs when an object is read from the database, let us extend the exam ple  

described in Figure 6.2, where the "describe" m essage is sent to a Person object which has not 

been read from the database. The sequence of events is as follows:

• The fact that the object has not yet been read in is detected in the _m sglm pFind() 

function. The m essage has been sent to a Proxy which has a realObject of nil. The code 

in _m sglmpFind() is:

if ((*refSelf)->isa == _Proxylsa) {
if (((PR O XY_TYPE*)(*refSelf))->realO bject != nil)

(•refSelf) = ((PR O XY_TYPE*)(*refSelf))->realO bject;
else {

((PR O XY_TYPE*)(*refSelf))->realO bject = 
[ObjectManager get: (*refSeff)];

(•retSelt) = ((PR O XY_TYPE*)(*refSelf))->reaiO bject;
}

}

The O bjectM anager is instructed to fetch the object represented by the Proxy from the 

database, and return it so that the Proxy's realObject instance variable may be modified 

accordingly
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• W hen the ObjectManager receives the get: message, it looks up the Class object in the 

object schema for the class of object represented by the Proxy. Recall that O IDs contain 

an indicator of the class of the object represented by the Proxy. The message

[proxyClass get: Proxy] 

is then sent to the Class object. The key thing to note is that Classes are responsible tnr 

knowing how to retrieve their instances from the object base.

• The Class instance method get: performs the following: it ensures that the Objective-C  

factory object for the class is available1: if an instance of DBSet has not yet been created 

for the class, one is; the DBSet is opened; the class's “getSelector" is then performed to 

retrieve the object from the database; and the DBSet is closed. Recall that each class has 

two instance variables named "getSelector and "putSelector". The methods named by 

these two variables specify how instances of that class are to be read from the object 

base. The default getSelector is named "readDB:", and it is this routine to which the 

following description applies.

• The readDB: method takes the Proxy to be read as its parameter. It, in turn, sends the 

m essage

[dbSet get: aProxy] 

to the DBSet associated with this class.

1 This is equivalent to ensuring that the application has linked the class of the object which is to be read 
from the object server. It is possible, for example, to have defined a class Person in the object schema 
and then not link the Objective-C  code for Person with the application A fatal error will result if this situation 
occurs.
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Figure 7.4: Representing Persistent Objects

= Person : O b ject { / /  Z IM  file  101 
char nam e[30];}

= E m p lo yee  : Person { / /  Z IM  file 102  
int em pN um ;
id spouse;}

Object Base Representation
| |  - Z IM  D/B null bytes P er s on

oid name

Employee

oid

7 7 7 .0 1 0 1 Molly le'Janitor

name empNum spouse

|Tj 9 9 9 9 .0 1 Q 2  ^ F r e d  le’Janitor 1 2 3 7 7 7 .0 1 0 1

FLr.s

9 9 9 9 .0 1  0 2

E m p lo y e e
isa name empNum spouse 

-
Fred le'Janitor

P r o x y

Objective-C Representation isa

- Where the instance variable 
value was taken from.

Indicates pointers to other objects. 
The isa pointers are to the 
Objective-C factory object for 

that class.

7 7 7 .0 1 0 1

Person
name

Molly le ’Janitor
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• The  DBSet object uses the O ID  provided by the Proxy to retneve the desired object from  

the Z IM  database file for the class. A pointer to the record retrieved from the database is 

returned to the Class method readDB:.

• The instance variable values of the retrieved record are then used to create the Objective- 

C representation of the object, as described at the beginning of the section Once the 

object has been created, it is added to the object cache (described later in this chapter), 

and then returned.

• Eventually, the newly-read object is returned to _m sglm pFind(), where it is assigned to 

the realObject variable of the Proxy which originally received the m essage. The object is 

used to modify the (*refSelf) value, and from there on, the Objective-C message-passing  

routines operate as normal.

Figure 7 .3  illustrates the persistent and dynamic representations of the objects involved in this 

exam ple.

Other Object Representations and Their Access Methods

Unfortunately, the instances of all classes cannot be read using the sam e mechanism  

This is due to the fact that certain classes have representations which are non-standard, as 

described in the previous chapter. In addition, the toolset developer m ay wish to define classes 

which, for some reason, cannot be accessed in the normal fashion Each of these classes 

require a different access method or the specification of an additional storage type, some also 

required a specific storage model. The following sections describe these classes, their 

representation in the Z IM  database, and the access methods required to read their instances.
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Custom-Defined Access Methods

Each Class object has "getSelector" and "putSelector" instance variables. The default 

values for these two variables are "readDB:” and "writeDB:" respectively. These name instance 

methods of the class Class which represent the standard method for reading and writing instances 

of a class from the object base. They each expect a Proxy as their parameter. Failure to conform 

to this will probably result in disaster.

By placing the names of different methods in these slots, different Classes may 

implement different access methods. For example, the following classes use the following 

methods:

These new access methods will be described in greater detail below.

Using these instance variables allows the tooiset developer, if he desires, to create new 

access methods for classes which have some non-standard representation. To do so, he will 

require some knowledge about the object server. The source code for the other access methods 

is available in the Class implementation to provide some guidelines.

In order to implement such a class, the Class object should have a "getSelector" of 

"readByClass'" and a "putSelector" of "writeByClass." These two methods have the following 

implementation:

IdArray

String readString: 
write String: 
readByClass: 
writeByClass:

readDB IdArray: 
writeDBIdArray:

User-Defined

-readByClass: aProxy {
[factoryObject readlnstance. aProxy for self];
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-writeByClass: aProxy {
[factoryObject writelnstance: aProxy for: self];

Note that each of these expect a Proxy as a parameter. In addition, the developer must 

write the access method code as well, in the Objective-C code which implements the class. The 

access method code must be implemented in terms of two class methods, which must have the 

following definition^:

+readlnstance: aProxy for: aClass 
+writelnstance: aProxy for: aClass

The "readlnstance:foi:" method must return the Proxy passed to it, with its realObject instance 

variable assigned to the object read from the database. The "writelnstance for:" method must 

return nil. The "aClass" parameter passed to both of these methods is the Class object in the 

object schema for the class being accessed.

IdArray

Recall that the class IdArray implements a class where the objects referred to are 

accessed as indexed array elements, rather than as named instance variables1. All of the 

examples discussed thus far have stated that all instances of a class are contained within one ZIM  

database file. This is not the case for instances of IdArray, which require two files to fully describe 

their instances. Figure 7.5 illustrates the jDOint. It shows an IdArray in its Objective-C  

representation and its format in the database. The points to note aie: the named instance

1 This is described fully in Section 6.1.
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variable capacity is placed in one file, and the indexable portion of the object are in the second. In 

the second file, each non-nil array element and its location in the array are written.
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Figure 7.5: Representing IdArrays

Object ive-C Representation
•  - Ind icates pointers to o ther objects. 

T h e  isa pointers are to the 
O bjec tive -C  factory object for 

that class.

In this exam ple , the following lines of code have been used to create an instance of IdArray.

m yA rray = [IdA rray  new : 3];
(m yA rray at: 1 put: an O b jec tlJ ;
[m yA rray at: 3 put: anObject2J;

T h e  two objects inserted into the array are , in fact, P roxies representing  persistent
I objects stored in the object base.

L.4 Ar r.py
isa  c a p a c ity  [ 1 ]  [ 2 ]  [ 3 ]

Proxy
oidisa isa

9 9 9 9 .0 1 0 2

Object Base Representation

H ] - Z IM  D /B  null bytes

W hen the IdA rray is written to the object base, the indexed portion of the array is written 
to a sep ara te  file. O nly the non-n:l entries are  written, along with their location in tha array

oid c a p a c ity

| |  1 9 2 8 3 .0 1  17  H  3

oid a t id

1 19283.011 7 P 1 9999.01 02

& 19283.0117 •X*

& 3 777 0101
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Recall that each Class has the instance variables "getSelector" and "putSelector" which 

take a Proxy as a param eter and return the specified object from the database. In order to read an 

instance of IdArray, the Class object for IdArray uses tne method "readDBIdArray:"; to write an 

instance of IdArray, the method "writeDBIdArray:" is used.

Since IdArray has a specialized access method, it cannot be sub-ciass^d in the object

server.

Collections

The class Cltn and its subclasses such as Set, Bag, OrdCltn and S lack all use an instance 

of IdArray to contain their elem ents. How ever, since the code that im plem ents these data  

abstractions routinely violate the encapsulation of this array, it is not possible to use a Proxy to 

refer to it. W hen a collection is read from the database, the IdArray which contains the contents 

must be  created  and its m em ory location given explicitly to the collection using it. The  collection  

object itself, of course, is referred to via a Proxy object.

Since the collection classes specify additional nam ed instance variables, and their 

contents are im plem ented as ar. IdArray, their instances are spread over three Z IM  database l.ies.

The m anner in which collection classes read their contents is of special note. Each of the  

collection classes keep the IdArray which contains their references in a nam ed instance variable  

called ’contents'. In order to allow the collection classes to be sub-classed, this instance variable  

has a specific data type, called DB C LTN . Essentially, the D B _C LTN  type indicates to the Class  

lhat this instance vanable contains an IdArray. W hen an instance variaole of this type is read from  

or written to the object base, it is treated as such.

The advantage to this approach is that it allows Collection classes to be sub-classed.

W hen a specific access method is written, as w as the case with IdArray, that class can only be
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specialized if the subclass does not add any instance variables. A subclass may be specified 

which modifies the behaviour, but not the structure of the class. When a new type is introduced, 

it is the type of the instance variable which specifies how it is accessed, rather than some specific 

piece of code.

String

Instances of the class String are similar to IdArrays in that they maintain a memory area 

which is indexed into rather than being represented by named instance variables. In this case, 

however, the contents are composed of a null-terminated C string.

The access method implemented for the String class takes advantage of the ZIM  

"varchar" data type described in the previous chapter. This data type will store a variable-length 

array of characters in the following structure:

{
short length;
char contents[x];
}

where x is the maximum length of the field, as specified >n the database schema entry. When the 

record is actually written to the database, the field is compacted to the length specified in the 

structure. W hen the record i? read from the database, the character array is padded with spaces 

(not nulls) to its maximum length. The access code then strips the trailing spaces and uses the 

res -u,ng C string to create an instance of String.
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In order to utilize this access method, the String Cl? s object has a "getSelector” of 

"readString:" and a “putSelector” of "writeString:".

Figure 7.6: Representing Strings____________________________________________

O b ie c t iv e -C  R e p r e s e n ta t io n
In this example, the following has been used to create an instance of String.

myString = [String str: "Fred le ’Janitor"];

Note that the contents of the String object is a C null-terminated st'ing.

isa

Fred le'Janitorj

O b jec t B ase R e p re s e n ta t io n

- Z IM  D/B null bytes

When the String is written to the object base, the contents of the object is placed 
in a Z IM  variable-'ength character field. Only the specified number of characters 
are written to the database.

oid length contents

1 9 2 8 3 .0 1  1 7 H i 15 Fred le'Janitor

7.5. Writing Objects to the Object Base

Recall that the object base is essentially one large complex object. Every item in the 

database is reachable from the database root object. Applications which use the object base do 

so by navigating through the directed graph of objects which is of interest to the user. This 

navigation is performed by sending m essages to the objects which are to be m anipulated by the 

toolset. Of course, these m essages are actually being sent to Proxy objects, and the database  

reads are therefore entirely transparent to the application. Writing objects back to the object base,
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however, is perform ed explicitly. The application code must send the "save:" m essage to the 

O bjectM anager. For exam ple, the following statem ent would save every object read since the  

O bjectM anager w as opened back to the object base:

[O bjectM anager save: rootObject];1 

where rootO bject w as the object returned when the O b jectM anager w as opened.

W hen an object is saved, every object reachable from that object is saved at the sam e  

time. The directed, cyclical graph of objects reachable from the root object is saved at the sam e  

time. The steps involved with performing this are straightforward.

■ G iven a root object, create a collection of every object of a persistent class reachable from 

that root. The collection is com posed entirely of Proxy objects. The graph of objects to 

be saved is created by the ProxyGraph class method "over:". For exam ple, the m essage

[ProxyGraph over: anObject]; 

will return an IdArray which contains the Proxy of every persistent object reachable from 

anO bject.

• In order to handle cycles, the graph walk procedure uses the "beenHere" instance 

variable of the Proxies. W henever an object is added to the collection, its Proxy's 

"beenHere" variable is assigned Y E S . If this Proxy is encountered later in the graph  

traversal, it is ignored.

• The  graph walk procedure uses the object schem a data to access the contents of the 

objects. For objects with nam ed Instance variables, the algorithm iterates through each

1 There is also a ’saveContentsOf:" message v hich will save evaiy object reachable from the contents of 
some collection, but which does not save the colection object itself. For example, if empSet is a Set of 
Employees, the following will save the set:

[ObjectManager saveContentsOf: empSet],
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of the variables. For instances of IdArray, the algorithm iterates through each elem ent in 

the array. One key thing to note is that the traversal stops whenever it encounters an 

instance variable which has been defined to be not persistent o r is not of a persistent

class.

• Iterate through the array of Proxy objects, saving each one in turn to the object base.

This process relies on the fact that each Class knows how to write its instances to the 

object base. Each Proxy is sent to its class as a param eter to a "store:" message: the 

method which implements "store:" then uses the Class's "putSelector" to write the object 

to the database. The process is optimized by opening the underlying ZIM  database file 

for each class only once, and then closing all of the files affer the objects have been  

written. As each object is written, its "beenHere" variable is reset to NO.

• Free the IdArray instance which contained the graph of Proxies.

7.6. The Proxy Table

W hen the ObjectM anager is opened, it returns a Proxy for the database root object.

Every Proxy created afterwards is the result of an object being read which refers to a second 

object. These reads occur whenever a message is sent to a Proxy object which has a realObject 

cf nil For example, in Figure 7.3 the Proxy for the Person object with an O ID  of 777.0101 was 

created when the Employee object with an O ID  of 9999 .0102  was read. W henever a persistent 

variable of type id is encountered when an object is read, the Proxy for the referenced object is 

placed in the correct offset in the object being read. However, it is critical that there is only ever 

one Proxy for each persistent object, so that all references to the persistent object remain 

consistent To ensure that this is the case, the ObiectM anager maintains a proxy table, which
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maps the oid of the persistent object to the location of the Proxy in memory. W henever an object 

reference is encountered when reading an object, the following events occur:

• If the O ID  of the instance variable is 0.0, then the variable is assigned ml. When writing an 

object, any nil references are assigned 0.0.

• If a Proxy already exists for that O ID, it is found in the proxy table by the ObjectManager 

and the variable is assigned to it. Note that this ensures that all references to the same 

persistent object are via the same Proxy object. Also, if the object had already been read, 

then this is reflected by the realObject value of this unique Proxy.

• If no Proxy exists for that O ID, a new one is created. Its oid value is assigned to the OID of 

the object being referred to, and its realObject value is initialized to ml. This new Proxy is 

then added to the proxy table kept by the ObjectManager. This table is used by the 

O bjectM anager to ensure that any subsequent references to the same object are 

resolved using the sam e Proxy instance.
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Figure 7.7: The Proxy Table

Every reference between persistent objects is handled via a Proxy object. The ObjectManager 
maintains a table of these Proxies ordered by their oid. Whenever a persistent object is being 
read from the object base, the inter-object references are resolved using this table.

Note also that the root object is actually nothing other than a pointer to a Proxy.

Root Object

Proxy Table

9999.01 02

777.0101

P r o x y
isa oid

► | 9999 . 0 1 02  f

E mpl oyee
isa name

Fred le'Jamtor

P r o x y
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f

empNum spouse
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The proxy table is implemented as an instance of class HashTable which, in turn, uses the class 

Set to maintain its elements. This extra level of abstraction is required since Sets send messages  

to their elements and it is impossible for a Proxy object to receive a message. Even more 

importantly, any messages received by a Proxy object will result in the object that it represents 

being read from the object base. If the proxy table inadvertently sent messages to its elements, it 

would quickly result in the entire database being read into memory. However, the key for the 

cache elements must ue the oid of the Proxy objects, since that is how they are retrieved by the 

ObjectM anager.
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7 .8 .  A Browser for the Schema

In order to maintain the object server's metadata, a browser for the class hierarchy has 

been provided. The browser essentially provides a user interlace (or the definition ot the classes 

whose instances are to be maintained by the object server. It provides the ability to create and 

destroy instances of the classes Class and InstVar.

The browser is of interest for two reasons: first, it provides a tool to inspect and modify 

the class hierarchy used by the object server; and second, it serves as an example application in 

the use of the object server itself. The browser is written in Objective-C, and demonstrates that 

the goal of transparency has been fulfilled.

Figure 7.8: The Class Browser__________________________________________________
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Array
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Figure 7.8 illustrates the format of the browser window. It is implemented as a SunView  

window with three panes. The first pane (top left) shows the class hierarchy. The inheritance tree 

of the classes defined to the system is indicated by the indentations. For exam ple, class Array 

inherits from Object, and class IdArray inherits from Array. The second pane lists the instance 

variables for the selected class. In the example shown, the class Point has been selected, and 

its instance variables x  and y  are listed in the pane. The third pane allows the user to specify the 

name, type, and length of the selected instance variable. In addition, the user can specify 

whether or not the individual instance variable is persistent. Non-persistent instance variables are 

not store n the object base, and are initialized to nil when the object is read.

At present, classes may be only added and deleted using the browser. New classes are 

added to the class hierarchy by selecting a class and then choosing 'add subclass' from the pop­

up menu. Instance variables for a class are added by selecting a class and then choosing 'add 

instance variable' from the pop-up menu. Classes are deleted by selecting a class and then 

choosing 'delete class' from the pop-up menu. Changes to classes are a tricky problem, since 

modifying the underlying data to reflect changes in the class specification is a non-trivial task. 

While the functionality of the present implementation is rudimentary, it provides a good 

demonstration of what a browser for the object server schema should look like.

In order to cause a change in the underlying ZIM  database schema, the browser must 

communicate the desired additions and deletions to the Z IM  environment. Recall that the ZIM  

schema Is largely described by two entity sets, Ents and Fields. The relationship between Class 

and Ents should be obvious. W hen a class is added or deleted, a corresponding entry in Ents is 

created or destroyed. Similarly, when a instance variable is created or destroyed, that change 

must be reflected in the corresponding entry in the Fields entity. Since Z IM ’s schema information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

160

may be accessed through the PLI, these changes can be made in a straightforward manner. 

Unfortunately, changing the schem a information alone does not cause an entity to be created or 

destroyed by ZIM . The metadata must be acted upon by the ZIM  system in order to have the 

necessary database files acted upon. For example, once an entity set has been defined in the 

Ents and Fields entity sets, the Z IM  command create must be issued to actually create the 

necessary ZIM  database file.

In order to have the additions and deletions to the class hierarchy reflected in the 

underlying Z IM  database, the following approach is used:

• The browser is actually called from inside ZIM . The Z IM  environment is entered from UNIX, 

and then the command

system ’dbBrowser1

is issued.

• A Z IM  entity set known as ModifiedClasses has been defined. The entity has two fields, 

namely classNam e  and actionCode. CiassName refers to the name of the class being 

manipulated by the browser. ActionCode is either 'A' for add, or 'D' for delete.

• Inside the browser, whenever a class is added its name is added to Ents, and its instance 

variables (including those defined by its superclasses) are added to Fields. Finally, a 

record is added to ModifiedClasses indicating that a class has been added. When a class 

is deleted, a record is added to ModifiedClasses indicating this as well

• W hen the user quits the browser, control is returned to the ZIM  environment. ZIM  checks 

the ModifiedClasses to see if there are any records. If so, the changes are acted upon

7 .9 .  Using the Object Server

In order to use the object server, the application developer should follow these steps:
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1) Write the application in Objective-C, just as usual. The only constraint is t^at the 

encapsulation ot the objects should be respected if the persistent objects are to be  

treated completely transparently. If, for performance reasons, encapsulation must be 

violated, the Proxy objects must be recognized and dealt with explicitly. A method which 

violates the encapsulation of its param eter(s) would have to recognize that they could be 

Proxies instead of whatever class of object is normally expected, as discussed in Chapter 

Six. For an example of the necessary code, refer to Figure 6.4.

2) After the system is working without persistent objects, the next step is to integrate the 

object server with the application. In order to do this, +he developer must first identify 

which classes are to have persistent instances. Next, the developer must decide which 

instance variables are to be persistent within those classes. After these decisions are 

made, the browser may be used to add the classes to the object server. In order to  create 

a new object server for this particular application, copy all of the files in the directory 

7usr/sirius/milink/zim3.0/caseDB/basic" into a new directory. To open a browser on the 

object server's schema, enter "dbBrowser" from UN IX .

3) Once the classes have been defined to the object server, the last step involves linking 

the ObjectM anager and modifying the application's source code to open and close the 

object server. Typically, these changes would be isolated to the mainQ  function of the 

application. For an example of the code fragments required, see Figure 7.9. The  

rootObject returned to the ap Plication by the open  m essage is the root of the application 

object* in the object server. If the system wants to deal with the schem a objects, it 

should send the m essage schem aRoot to the ObjectM anager.
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Figure 7.9: Using the Object Server

^req u ires  ObjectManager; 
main() {

id rootObject;
rootObject = [ObjectManager open];

r  Insert application code here 7

[ObjectManager save: rootObject]; 
[ObjectManager close];
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8. Conclusions  

8.1. Meeting the Goals

The primary goals of this work were to support the following:

• To provide a persistent object store for the ARTTisan toolset.

• To integrate the object server with the Objective-C language.

• To evaluate the effectiveness of the object-oriented approach as an implementation  

vehicle for C A SE environments.

V iew ed from the vantage points described above, the present implementation of the object 

server is a success, since the goals were accomplished. However, a thesis is a learning process, 

and there are a number of imorovements which could be m ade to ihe design and implementation 

of the object server. These extensions to the work are described in the next section, entitled 

Future R eseat ch.

Persistent Objects

The number o ra  goal of this research was, of course, to provide a working persistent 

object store for the ARTTisan toolset. This goal has been met. The system described in this work 

provides for the persistent storage and retrieval of the objects m anipulated by the toolset. 

Under'ymg this goal, of course, is the requirement that the object server provide satisfactory 

pertormance. Performance here can be broadly measured in terms of two parameters: the time 

required to read the objects from the object server, and the time required to save the objects 

back to the object base. While the object server has not yet been used with the entire toolset, 

the following observations have been made
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• Reading in individual objects seems to provide adequate performance. The toolset may 

be viewed as a graphical editor for the persistent objects stored by the server Objects 

are typical'y read when the user pertorms some action that specifies that a particular object 

is of interest. For example, the user may click a mouse button while pointing to a 

graphical representation of an object. The response to read a typical diagram from the 

d atau "-., is (subjectively at least) acceptable. The time lag to read such a diagram is 

typically one to two seconds.

• Writing out collections of objects admittedly takes some time. After running some time 

trials, a m ean time of 2.5 minutes to save 3000 new objects to the object base ■ is noted 

While not unacceptably slow, this time is not blindingly fast either. To a large degree, 

there is a trade-off being made between retrieval time and storage time for the persistent 

objects. W hen an object is being written to the database, the ZIM  index associated witi. 

the object's O ID  must be updated. This takes some added time, over and above the time 

required to write the object to the server. However, the indices provide improved 

performance when reading the objects from the server, since indexed retrieval is faster.

In order to support persistent objects, an object-oriented data model was used. The model 

supports the notions of object identity, an extensible type system and inheritance. Complex 

objects and aggregate objects are supported as well. One uncommon feature of the data m ode’ 

is that ir.dividual instance variables of pers'stent classes may be declared as unpersistent. These 

instance variables are not saved to the object base, and are initialized to nils when they are read 

This feature was motivated by the application: there are classes for which 'his approach is 

required.
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The object server implementation illustrates the utility of using a commercially available 

database as the back-end for the system. Using the ZIM  PLI resulted in a number of advantages, 

including:

» Since the ZiM  PLI took care of indexing, storage, retrieval, physical file access, and 

database consistency, there w as less coding to perform, and the resulting tool contains 

fewer errors as a result.

• The Z IM  PLI offered low-level access to the data. The object server would have been 

difficult, if not impossible, to implement using an em bedded database language. This is 

because of the added consistency checks and compile-time type checking implicit in the 

use of such tools.

• ZIM  offers portability as an avenue for future enhancements to the system, it is presently 

available on a large number of different hardware platforms and operating systems The 

PLI is also available on these platforms. As a result, porting the object server to different 

environments should be greatly simplified.

• The ZIM  PLI also offered access to the database schema data. This allowed the creation 

of routines which modified the system's metadata.

The present object server implementation could be improved with respect fo its use of the PLI. 

The primary drawback of the current approach results from the design decision to place all 

instances of a class in a separate ZIM  database file This approach was motivated by the belief that 

it was more efficient and that it offeied the ability to use the ZIM query language to examine the 

contents of the object base. Separating the object store ,nto separate files poses a number of 

constraints:
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• It prohibits the clustering of objects on disk based on expected usage patterns. Instead, 

objects are clustered based on their class, a strategy which yields few benefits in an 

application which is graph-oriented and where there is no query language to be 

supported.

• Maintaining consistency between the object server's m etadata and ZIM 's schem a was  

found to be a problem. It is certainly not impossible to maintain such consistency, but it 

requires a lot of code to check, and is a constant source of errors.

• Because of the operating system limit on the number of files opened by an application, 

spreading the object repository over a group of files occasionally caused errors as well. 

The problem is certainly not difficult to fix through the use of Z IM  configuration 

parameters, but it is another variable to concern yourself with.

An alternative object server implementation, which uses a minimum number of ZIM  database files 

is described under Future Research.

Integration With Objectlve-C

The second major goal of this research was to proviae a persistent object service which 

was essentially transparent to the toolset code. This requires that persistent objects be treated in 

an identical fashion to dynamic objects. The toolset code should not be required to test whether 

an object is on disk or in memory; persistent objects should be syntactically identical to dynamic 

ones; and persistent objects should not be required to be a subclass of some special class.

These goals have been met by the current object server implementation through the use 

of the Proxy interface. The illusion of the one-levei store is fully supported - the application code 

does not know, or care, if an object has been read into memory. In addition, since the 

messaging kernel of the Objective-C language has been modified to identify messages to Proxy
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objects, this interface provides good performance1. There is relatively little overhead in sending 

a message to a persistent object, once it has been read into memory.

Persistent objects are also fully consistent with dynamic Objective-C objects. This means, 

for example, that the object server does not use a different type system than the Objective-C  

language. In addition, the object server provides support for a large subset of the C primitive 

types and most of the Objective-C Foundation Classes. Those that were not implemented could 

be added easily to the system. They are not provided at the present time simply because they 

were not used by the toolset code, so there was little motivation to implement them. The 

exception to this is that there is no support for the storage of arbitrary C structures and unions. 

Again, however, the present toolset implementation does not require the persistent storage of 

these types. Typically, any references to a C structure are not persistent, and this is handled by 

the object server by specifying that the instance variable in question is not persistent 

Effectiveness of the Object-Oriented Approach

The Objective-C language, and the object-oriented approach that it entails has been the 

implementation vehicle for the ARTTisan toolset. While there has certainly been a learning curve 

involved with adopting this methodology, it has been, on baiance, a success. The object- 

oriented approach offers a number of key advantages for implementing a CASE environment It is 

an effective approach for the modeling of complex data types, such as the directed graphs which 

form a large part of the application. Its emphasis on encapsulation and modularity provides for 

increased reliability, minimized code bulk and increased code re-use. Its major drawback is the 

lack of a generally accepted and coherent design methodology. Object-oriented design is still

1 Note, however, that no changes were required to the Objective-C compiler.
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very much a hit-and-miss affair. It seems that there is really no substitute for the subjective 

application of a designer's experience at the present time.

The Objective-C language itself has a number of advantages and disadvantages. Its 

strong points include: a fairly consist implementation of the object-oriented paradigm, closely 

modeled after the Smalltalk model; a reasonably extensive library of classes; the ability to link to 

different packages; the ability to violate the encapsulation of an object at the programmer's 

discretion; and reasonably fast execution speeds. Its major disadvantages include: the ability to 

violate the encapsulation of an object at the programmer's discretion1, and the Foundation class 

implementations which do so as the rule, rather than the exception; the lack of a cohesive 

development environment, such as Smalltalk's; and the lack of a reasonable memory 

m anagem ent scheme.

8.2. Future Research

Object-oriented databases, object servers and database programming languages based  

on the object-oriented paradigm are all currently active areas of research. As such, this work 

represents but a first step. There are numerous extensions to, or additional avenues suggested 

by this research. The following sections cover a number of possible research areas which could 

follow this work.

M is c e l la n e o u s

The following describes a number of improvements which could be m ade to bring the 

system from a proof of concept' to a more complete and robust state. These enhancements

1 The inclusion of 'violating encapsulation' as both a strength and w eakness of O bjective-C  was  
intentional This is a double-edged sword which, if used without discretion, will negate many of the benefits 
of using an object-oriented language. That said, however, access to the internals of objects m ade the 
implementation of the object server simpler and more efficient.
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represent incremental improvements to the existing implementation, rather than the major 

changes described in later sections. They include:

• Improved  consistency checking between the object server and the language. This could 

include the creation of a automatic schema translator to generate Ob|ectiva-C class 

definitions from the object server schema. Translating from the Objective-C definition to a 

schema representation is not feasible, since the schema requires more information than 

is available. For example, each instance variables must be defined to be either persistent 

or unpersistent.

• Improved consistency checking between the object server and Z!M. Primarily, this implies 

the ability to handle class modifications. When a persistent class is modified, two things 

must occur: the class definition must be changed in Objective-C, in the object server, 

and in ZIM , and any existing instances of the class must be modified to reflect the new 

definition.

• Garbage collection of tho persistent objects must be provided. This is necessary since 

there is no way, at present, to physically delete an instance of a persistent class from the 

object base1. It is, however, possible to logically delete an object by de referencing it. A 

simple mark-and-sweep garbage collection algorithm could be implemented, using the 

database root object as a starting point.

1 It could be possible, however, to modify the behaviour of the free m essage to delete 'nstances from the 
object base.
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Multi-User Issues

One of the most important extensions for this work is in the area of multi-user access to 

the persistent data. Before presenting a strategy to solve this problem, let us describe the issues 

involved in extending the object server to support multi-user access to the toolset.

Software Design Transactions

In typical database applications, transactions typically have a duration of a few seconds or 

less In a software design environment, however, transactions may last hours, or even days. For 

example, a typical software design transaction for a user of the A R TT toolset would consist of the 

following steps:

• The user logs on and starts up the toolset.

• He then selects the system that he wishes to work on from the set of system icons on the 

desk top. He then enters the top-level design tool. Note that several users may want to 

work on the same system concurrently. However, it should be possible to lock specific 

system components for the exclusive use of a single toolset user. These locks may have 

a duration of days.

• Once he enters the system, he adds, changes, deletes and browses the various objects 

that make up the design. These actions may result in additional tools being activated.

• At any point in time, the user may wish to save his changes back to the object base. He 

may wish to save his work either because some logical point in the design process has 

been reached or merely to protect himself against the possibility of the workstation or 

network going down. Note that saving a work-in-process is not the sam e as committing a 

design to the object base.

• Periodically, he will terminate a session, typ^ ally after saving his work once again.
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• At some point, a commit is issued and the design is identified as once again being in a 

consistent state and available to others for use 

This scenario implies a number of important points regarding the nature of software design 

transactions.

Duration: Design transactions may last a long time, typically several hours or days 

Therefore, the traditional solutions for controlling multi-user access of queuing users 

making competing requests for database access will not work. Obviously, queuing a user 

for an extended period while som eone else is manipulating the desired object is not a 

viable mechanism  for providing concurrency control.

Consistency: The overall consistency of the data committed to the database during a 

transaction cannot be checked by the DBM S; designs can and must be saveable in an 

intermediate (and hence, inconsistent) state. As long as the data is consistent at the 

individual object level, it can be written. The consistency of complex objects is the 

responsibility of the tools themselves. This is quite different from traditional database  

applications, where only completed, and presumably consistent transactions are written 

to the database.

Note, that to a large degree, intermediate states must be saved to the ob|ect 

base because of the long duration of software design transactions. The tool users will 

want to save intermediate states of their design to protect themselves from workstation of 

network failure.

V o lu m e: Software design transactions touch (or have the potential to touch) large 

volumes of data of many different types. However, designers do not necessarily want
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write access to all of the data that they wist' to see. Often, much of the data that they 

access is to browse other portions of the system under design.

Locking: Unlike traditional database transactions, the inability to lock an object should not 

imply the failure of the entire transaction. Hours of work could be lost, if this approach was 

followed However, the user should be informed that he cannot access a certain object 

because someone else has already accessed it.

Performance: The duration and volume of data accessed by software design 

transactions makes the caching of objects a requirement for performance reasons. 

Reading objects from the database every time they are accessed by the tools would be 

too expensive in terms of disk I/O  and network traffic. However, the object m anager must 

know which objects have been cached in order to ensure that the different users are not 

manipulating the same object, 

in addition, the implementation of the object server presented in this thesis has an impact on the 

nature of the design transactions, as they would be supported by ARTTisan. Data is read from  

the object base implicitly, while they are written explicitly. Objects are fetched from the object 

base as the toolset references them by sending a message to them. Objects are written, 

however, when a complex object is explicitly sent to the object m anager for saving.

As a result, reading a complex object can be a very long operation, since it may involve 

many small reads as the object components are read on an ’as needed' basis. Write operations, 

on the other hand, would typically be of a shorter duration, with a (potentially) large number of 

objects being stored at one time.
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The Granularity of Object Access; Defining Composite Objects

In the present implementation, individual objects are read from the object base as they 

teceive messages. While this works reasonably well, there are a number of factors which motivate 

extending this approach:

1) Often, the toolset developer will know that a certain group of objects would be accessed 

toqether. For example, recall that the toolset objects are represented by a tool' object, 

which references a 'logical' object and a 'graphical' object. This relationship is shown in 

Figure 9.1. In virtually all cases, when the tool object is read, the graphical object 

associated with it would be read soon after. This is due to the fact that usually if a tool 

component object is accessed, it will be shown to the user by the toolset It would be 

useful to antinpa'.e this, and read the two objects as a unit. There should be a 

mechanism to specify a larger unit than individual instances as the unit which is to be read 

‘'e m  the object base. This unit is referred to here as a 'composite object*

Figure 8.1 Representing ARTTisan Objects______________________________________

Tool
C om ponent
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2) For the purposes of multi-user access to the object base, the reading and caching of 

single instances of objects presents a oroblem. Since objects are read one at a time, and 

the reads are essentially event-driven, it may take a long time to read in those portions of 

a large, complex object that the user wishes to access. In the meantime, another user 

could be following another path through the object base to the same complex object. At 

some point, a collision will occur, and one user will lock an object that the other is 

interested in The problem is that, since the unit of access is single objects, there is no 

reasonable place to test to see if a object is already locked, without testing every single 

object in the code W hat is needed is some way to identify larger groups of objects which 

may be locked as a unit, and have the toolset code test to see of they are locked before 

they are accessed. For example, it would be an onerous task to write code which 

explicitly locks individual instances of class Point, but it would m ake sense to explicitly 

lock an entire state machine diagram when it is read by the toolset.

3) As an extension (or even an alternative) to locking composite objects, they could also 

be the unit of versioning in the object base. Maintaining a sequence of versions of the 

major components of software designs has long been recognized as an important feature 

offered by CASE environments. The definition of the units which the application wishes 

to version is a key facet of providing such support. A second interesting point regarding 

versioning is that it has been suggested as a mechanism for providing concurrency 

control The basic idea is to create new versions of objects when they are written to the 

ob|ect base, rather than changing them in place. Since objects are never changed, only 

added, concurrent access to them is greatly simplified.
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The challenge then, is to define a mechanism which will allow the toolset developer to specify 

'composite' objects which may then be read and cached as a single unit, and which will also act as 

the unit which individual users may lock and/or version. The present data model supports the 

notion of complex objects as large networks of inter related objects, where the relationships are 

based on the idantity of the objects involved. At the limit, the entire database is reachable from 

the root object, and thus may be viewed as a single, if huge, complex object Composite objects 

may be viewed as providing the ability to define objects whose granularity fall between these two 

extremes.

Once a mechanism has been provided whereby the object server users may specify 

complex objects which may read as a unit, the next step would be to store these inter-related 

objects together in order to improve performance. Disk search times are one of the major 

limitations on database retrieval, and clustering related objects physically together is one 

approach which has been suggested for improving performance (Hornick and Zdomk, 1987) 

(Banerjee, et al, 1987).

Making Objective-C a database Programming Language

One of the most interesting avenues of programming language research has been in the 

area of database programming languages. Researchers in this field view the separation of 

databases and programming languages to be artificial Instead, they propose the inclusion of 

persistence and multi-user access to shared data (two of the major roles of database) m general- 

purpose programming languages. This approach is in stark contrast to the database/programming  

language dichotomy which is the norm today. For example, to use the latest m relational DBMS  

technology - the SQL query language standard - the applications developer must write the 

control logic in a third generation language, and restrict his use of the database for fetching and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

176

storing relational tuples Complex objects are not supported: they must be constructed by the 

selects, projects and joins contained in the application programs.

An interesting extension to the research presented in this thesis would be to extend the 

object server implementation to the development of Objective-C as a database programming 

language Under this approach, all objects would be at least capable of being wntten to a 

persistent store1: however, which objects are actually saved would be under program control.

The oDjecT server presented in this work is a large step in this direction. It provides the transparent 

storage and retrieval of objects defined to the application. It does not go quite far enough to be 

accepted as a database programming language. The major missing piece is the difference 

between the memory management for persistent and dynamic objects.

A true object-oriented database programming language would be an ideal development 

vehicle for the creation of CASE environments. The one-level store' abstraction would be a 

natural part of such a language. Therefore, programmers would not have to concern themselves 

with the location of objects. Disk-resident objects would be treated identically to dynamic ones. 

Objects would be read from the persistent store in a transparent manner. However, the real 

advantage to the extensions proposed below are:

• The representation of persistent objects would be as close as possible to their dynamic 

representation A great deal of computing muscle is expended with the current 

implementation translating between the two representations.

1 This m eans that all classes defined to the application are persistent. This is contrast with the current 
implementation, where only specified classes are capable of being written to a persistent store.
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• The message passing kernei of the language would be modified such that pointers to 

persistent and dynamic objects would be identical in format1 Whether the receiver of the 

message was dynamic or persistent would be resolved when the message was sent.

• All of the objects in the persistent store would be saved in a single ZIM database file This 

approach has a number of advantages:

1) There is no requirement to maintain consistency between the ZIM schema and 

the object server's metadata. Nor do objects have to conform to a ZIM record 

format. This is a major benefit, since maintaining this consistency was found to 

be problematic.

2) It is possible to implement clustering strategies, where the components of large, 

complex objects are stored contiguously in the object base This could allow 

major performance improvements, since objects which are likely to be used 

together would be stored and retrieved from the persistent object store as a unit. 

Disk search times would be reduced as a result.

The following sections describe a design for extensions to Objective-C which would make it a true 

database programming language.

Buffer and Segment Management in a Single Object Repository

The advantage to storing all of the objects in the object store in a single ZIM database file 

is that it allows greater flexibility in the implementation. For example, since there would no longer 

be a requirement to store definitions in the ZIM schema, all of the constraints placed on metadata 

management w -uld be up to the implementer. As a result, not all instances of a class would be

1 Under the present implementation, references between dynamic objects are via regular 4-byte pointers 
while references between persistent objects are represented as 8-byte doubles
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necessarily stored together. Objects could be clustered on a more application-specific basis. For 

example, all of the sub-components of a toolset diagram could be stored together in a single 

segment. This would minimize the number of disk head movements required to retrieve a  

complex object from the object base.

The suggested implementation would be as follows:

• As far as the ZIM  database schema was concerned, the object repository would have two 

fields

(1) the segment number (4-byte int, indexed)

(2) the segment (1000-byte char)

All persistent objects would be written directly into segments. Segm ents would also 

contain a reference to the next segment - for objects which span multiple segments - 

and a pointer to the next available offset within the segment for an object to be placed. 

Segment compaction would be performed by the garbage collector. Obviously, variable- 

length objects such as Strings and Arrays will require special handling. Since they no 

longer have to match the structure of a ZIM  record, the format of persistent objects is also 

under the control of the implementer. The persistent format of a class's instances should 

be identical to its dynamic representation. Any additional information required by the 

object server could be placed before the object's offset in the segment as an 'object 

header'. For example, it may be useful to store such things as the object's OIO, its lock 

status, its owner, its version, and a byte for use by the mark-sweep garbage collector.

• A second Z IM  database file would contain the persistent object table. The table entries 

would consist of:
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(1) the Object Identifier (4-byte int, indexed)

(2) the object's location (4-byte int)
[segment #  + offset]

Objects would be contained in one or more segments. The object's physical location 

would consist of a 19-bit segment number and a 13-bit offset1. A persistent object table 

is required in order to allow for the movement of objects within and between segments. 

For example, if the object base garbaga collector is to compact the storage reclaimed 

within segments, it will be necessary to move objects within them.

• Since ZIM  concurrency control mechanism implicitly locks at the page level, manipulating 

segments of this size yields a segment locking strategy. In addition, the transaction 

commit and rollback scheme supported by ZIM  works at the page level, so consistency is 

maintained at the segment level. Lastly, ZIM's buffer management is also based on 

pages.

Implementing Persistent Objects Using an Object Table

The key to turning Objective-C into a database programming language is the introduction 

of an object table into the language's memory management. This approach is based on the 

Smalltalk language model. The contents of the object table would be based on the persistent 

object table described above. At run-time, references from one object to another are actually 

handled as offsets into the object table. All objects - both persistent and dynamic - are 

referenced via the object table2 . The contents of the object table contain either the object's

1 This scheme was motivated by the following: ZIM databases may be configured to have page sizes of 1K. 
2K or 4K. Since we want to use offsets into segments to form part of the address of the object, we must 
allow for a maximum offset of 4096. This translates to 2 12. This leaves 19 bits of a 32-bit integer to 
represent the segment number.
2 For dynamic Objective-C objects, re-write (*_alloc), (’ _realloc), (*_dealloc), and (*_copy) functions so 
that the memory model recognizes the added level of indirection provided by the object table.
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location in memory, or the object's location in the object base. As persistent objects are read into 

buffers by the ObjectManager, fheir location would be updated in the object table. The message  

passing mechanism would require modification to recognize this additional indirection.

The addition cf an object table would also require a modification of the code generated by 

the Objective-C compiler. Presently, each message is passed the variable self, where self is 

memory address of the message receiver. Under this scheme, self could be either the O ID  of the 

receiver in the object table, or its memory location. Both of these alternatives pose a problem. If 

self is assigned the value of the table offset, the compiler will handle the locations of instance 

variables incorrectly. At present, all instance variable references in Objective-C code is compiled 

to self->instVarName. If self is an object table offset, offsets generated in this way will be 

incorrect. If self is passed as the actual address of the receiving object, then assignments of self 

will be incorrect, since the object's address, rather than its O ID  would be used.

O ne possible solution could be to add an additional param eter to the functions which are 

generated by Objective-C to implement methods. This new param eter would be called location, 

and would be the actual memory location of the object in question. Self would contain the 

object's O ID , and location would contain the object's address. Instance variable references would 

now compile to !ocation->instVarName, rather than self->instVarName. This approach would 

ensure that m essage sends to self would be handled correctly.

The object table entries would contain a variable which indicates whether an object is 

located on the heap or in the ObjectManager. Note that the entire object table would not be read
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at start up. Instead, entries would be read as references to them were actually made available to 

the application as segments are read1.

1 How the object table is actually implemented in memory would be a critical implementation detail. While 
OIDs are described here as offsets into the object table, this scheme requires an array as large as the 
highest object identifier number, which could be 2^1. Alternative implementations could be based on hasn 
tables or B -trees.
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Figure 9.2: Object Table Memory Management

All references between objects under the current memory m anagem ent model are 
direct - ie. through normal C pointers

isa

isaisa

Introducing an object table gives an added layer of indirection in the object references. 
References to other objects are now via offsets in the object table. The  m essage-passing  
kernel must be modified to recognize this.

isa

5 4

isa

54
isa

The violation of encapsulation which is allowed by the Objective-C compiler would be 

even more fraught with danger, since the applications developer would also have to explicitly
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recognize this added level of indirection. This is in addition to the present requirement that any 

developer who wishes to violate an object's encapsulation must test whether or not the object has 

been read into memory.

The objects managed by the system would physically reside in two locations: either on 

the heap as dynamically created objects, or in the object base buffers managed by the 

ObjectManager. New objects would be allocated on the heap, and their OIDs and locations 

added to the object table. New OIDs would be allocated sequentially and would not be re-used. 

All of the classes defined to the application would be capable of being written to the persistent 

store. W henever the client application issued a commit, all of the objects reachable from the root 

object would be written to the object base. Any objects which are preser'ly  located in the heap 

would be copied to the ObjectManageFs buffers, and their dynamically allocated memory 

returned to the heap. Their new location would then be registered in the object tab le1.

W hen a message was sent to a persistent object which was not in memory, its segment 

would be read. All of the objects in the segment would have their locations in the object table 

update to point to their location in the Object Manager's buffers. All of the objects referenced by 

the objects in the segment would have their O IDs added to the object table. Thus, objects which 

have no possibility of being accessed by the application would not be referenced by it. When a 

segment was committed to the object base, the object's memory location would have to be

replaced in the object table by its location in the persistent store.

Using this approach, it would be relatively straightforward to implement a virtual memory 

for Objective-C. As the buffers of the ObjectManager became full, the segments they contain

1 Note that this implies that the becomes: message must be supported in this implementation Recall that 
this message modifies the memory location pointed at by an entry in the object table. In order for this
message to work, s ll objects must be referenced via an object table.
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could be written to a file in the usei's working directory. The objects contained in the swapped  

segments would have a toggle in their object table entry modified to reflect this change. New  

messages to swapped out objects would result in their segments being returned to memory.

Another possible extension to the object server's functionality which is made possible by 

these proposed changes would be to implement a distributed object server architecture. ZIM  

allows different database files to be located in separate directories. The location of each database  

file is contained in a file called areas.zim. Using SUN's Network File System, the database files 

could be located anywhere on the network. Under the normal Z IM  environment, this allows the 

vertical partitioning of the database. All records of a certain entity set may be stored on the same 

physical file system. Using the approach discussed here, each file could represent a separate 

object repository, instances of any number of classes could be contained in each of these  

repositories, thus providing a truly distributed environment. O ne could, for exam ple, easily 

envisage the different toolset users maintaining private design information on their own local 

object stores, with shared objects maintained in one or more shared object bases.
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