Acknowledgements

| would like to thank my supervisor Professor Pagurek for all of the help and
encouragement he offered during the writing of this thesis.

Most of all, | would like to acknowledge the contribution of my wife Cathie.
Without her steady love and encouragement, through what was a difficult period of my

life, none of this would have been possible.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I*l National Library
of Canada du Canada

Bibliothéque nationale

Canadian Theses Service Service des théses canadiennes

Ottawa, Canada
K1A O4

NOTICE

The quality of this microformis heavily dependent upon the
quzlity of the original thesis submitted for microfilming
Every effort has been made to ensure the highest quality of
reproduction possible.

' pages are missing, contact the university which granted
the degree.

Sore pages may have indistinct print especially it the
original pages were typed with a poor typewriter ribbon or
if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed
by the Canadian Copyright Act, R.S.C. 1970, ¢. C-30, and
subsequent amendments.

NL 339 {r 88/04) ¢

AVIS

La qualité de cette microforme dépend grandement de la
qualité de la thése soumise au rmicrofilmage Nous avong,
tout fait pour assurer une qualité supéneure de reprouc
tion.

Sl manque des pages, veullez communiquer avec
funiversité qui a conféré le grade

La qualité d'impression de centaines pages peut {aisser a
désirer, surtout si1 les pages originales ont été dactylugra
phiées a l'aide d'un ruban usé ou si Fumiversité nous a fan
parvenir une photocopie de qualité inténeure

La reproduction, méme partielle, de cette microforme ot

soumise a la Loi canadienne sur le drcd d'auteur, SHC
1970, ¢ C-30, et ses amendements subséquents

Canadi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An Object-Oriented Database for a Computer Aided
Software Engineering Environment
by

S. Michael Milirkovich, B. Comm.

A thesis submitted to the
Faculty of Graduate Studies and Research
in partial fulfilment of the requirements
for the degree of

Master of Science

Faculty of Engineering
Department of Systems and Computer Engineering
Carleton University

October, 1988

© copyright

1988, S. Michael Milinkovicn

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Permission has been granted
to the National Library of
Caneda to microfilm this
thesis and to lend or sell
copies of the film.

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from it
may be printed or otherwise
reproduced without his/her
written permission.

L'autorisation a &té accordée
4 1la Bibliothéque nationale
du Canada de nmicrofilmer
cette thése et de préter ou
de vendre des exemplaires Adu
film.

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;

ni la thése ni de 1longs
extraits de celle-ci ne
doivent @étre {imprimés ou

autrement reproduits sans son
autorisation écrite.

ISBN 0-315-51197-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The undersigned hereby recommends to the Faculty of Graduate
Studies and Research acceptance of the thesis
"An Object-Oriented Database for a Computer Aided Software Engineering Environment”
submitted by S. Michael Milinkovich, B. Comm., in partial fulfillment

of the requirements for the degree of Master of Science

2 ' ’

et _
art_)f/e_s r B. Pagurek, Ph.D.

(4

~

Chairman,
Department of Systems and
Computer Engineering

Department of Systems and Computer Engineering
Facuity of Engineering
Carleton University

November, 1988

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Object-oriented approaches to the design and implementation of computer
systems has been an active area of research during the 1980's. This thesis explores the
appiicztion of this methodology to the design and implementation of a persistent object
storage system to support a Computer-Aided Software Engineering (CASE) envircnment,.

The system uses a commercially available database management system (ZIM) as
the starting point for a persistent object manager for the programming language

Objective-C. The system itself is implemented in Objective-C and some assembler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknhowledgements

I would like to thank my supervisor Professor Pagurek for all of the help and
encouragement he offered during the writing of this thesis.

Mest of all, | would like to acknowledge the contribution of my wife Cathie.
Without her steady love and encouragement, through what was a difficult period of my

life, none of this would have been possible.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Trademarks

Apollo is a trademark of Apollo, Inc.

DEC and VAX are trademarks of Digital Equipment Corporation.
GemStone and OPAL are trademarks of Servio Logic Corp.
Objective-C is a trademark of Stepstone Corp.

SUN and SunView are trademarks of SUN Microsystems, Inc.

UNIX is a trademark of AT&T

VM/CMS and IBM are trademarks of Internationai Business Machines.

ZIM is a trademark of Zanthe Information Inc.

[

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

T o] B 10 11 = U O 1
LR T 11 € o Yot ¥ Tk (o] o IPUO OO PP PP OPPT U PPPTPPRRRPPNt 3
1.1. Motivation for the ReSearCh........ccccvivmviiiiiiiiiciiee i e ee e 3
1.2.The Application: The ARTTisan TOOISEL........cccoviiieiiiiiiiircceceee e 5
THE TOOISEL. ...t ceee e ee e eeeee e er s e e et ea et mreraeesermnnseresmennnneennnnnnns 5
1.3.0verview of the RESEAICHccoiii e e e e 10
1.4.0UtliNe Of the THESIS ceiit e ettt e e e e teann e e e e e 11
2. Object-Oriented CONCEPLS......ccciiiiii ittt teee e e e e st ae s e reieae e e e eseesesseans 12
2.1.The Object-Oriented APPrOACHccccoiiiiiiiiieieeiei e ee e e eeeeeae e 12
Objects and Data AbSIraClioN......cc.ociiveceiiiereeciiiiieeee s rersnae s esses e seeneeees 13
Encapsulation ... e 13
LOCAlitY...cccveeeerie e ceeviaes feetteeerraesrtaaeartaaereanranraans 14
Classes and INSIANCES........ cuecieiiivireriiieeiir e e eeieeerr e ee e e e aee e 15
LINQUISTIC SUPPOI ...eiiiiee i ieermrnrircrre et eeee s s reaeresnrese e s 16
Composite Objects S PO U T U PRPTPPPPUPRRPTI 16
Lt T 41T o Lo - O OSSP USROS 17
MESSAGE PaSSING .eeeueenrieeiieiieeni s e creetitieee e et eeeeeemmanataaeeeeeennraneaesenas 18
Bindings, Protocols and Polymorphism......ccccccevvs vvvvvvnennnnnnnnnne 19
2.2.0bject-Oriented Programming LanguUagesc.cccceeet vervrrveeieeenenieeeeeieeenes 22
SMANTAIK ..ottt et e e e e e eee e en e eeeeeas 22
ObJECHIVE-C ..ot teeeeeeeerreraaeerrann———— 26
3. Object-Oriented Database Management Systems.........cccieveviiiiiiiriencie e 28
3.1.Introduction to Database Management SyStems..........cooieieeiriiieiiiieeeneenneannans 28
Data Models and ADSIraCtionScccvieeriiieemeiieriniriirer s eraenriee s e e et e aera e e 28
LaBNQUAGE SUPPOM ...eeeiiirierieireriiiirinieeeees creevereesessasssesssnnns rereeereetrrerenn—. 30
Security and INEGFItY. ...t ee e e 31
Concurrency and TranSaCoNS.......cuviviiiiieeeeeieeterrrreeeeeeeeeeeeeeereeerrenresenes 31
RESHIBNCY . ceeiii ettt er e e e e e e te e bt e e e ete e eanes e senn e e e aenean 34
3.2.The Motivation for Object-Oriented Databases..........ccooveveiiiiiiccinenicrinncnne 35
Why Relations Are NOt ENOUGNoooiiiietrreee e e 35
Database Issues Addressed by the Object-Oriented Approacii..........cc...... 39
Conceptual MOdelling........cocverriiimniec i e e e eeene e 39
VWS ittt ettt ee e rreeae e e eeat s ente e e erraa e arae e rarenaneenenes 41
CONSITAINTS .ttt ee et eeree e e e s e e e ee st ena e e beaeaneseens 43
Meta-Data Management.........oooiiiiiiimiimiieei e tere e e aree e e 45
KNOWIEOQE BaSEScceviiiieeiiieiee e e eererrcresise s eeesseseaesererrerransvenees 47
3.3.0bject-Oriented DatabaSeS........c.uviveueriiieeeriiiaiieeeeeeierees evirreeesinrneneeeearenans 47
Two Perspectives in Object-Oriented Databases.........ccccvvveevvvveceriieeeennenn. 48
Obiject Identity and Complex ObDjJECIS.....uuiurieriiiireererieee e e eeae e 49
ENCAPSUILION ..o e e 50
Extensible Type SyStemsS.........ccoviiiiiiiiie e s 51
FaTaT=T €1 - Ta o] - P UT PP OUUTO TP 52
4. Implementing Object-Oriented Databases...........ccccvvvv i 53
4.1.Implementation !ssues for Object-Oriented Databases.......c...cccvvvvevvvvnernnnne 53
Complex Objects - HOw Big is Big7....cccoooiiiiiiiiniriiiieieie e s cvreenninn 53
CONCUITENT ACCESS «eveerrurieritimeeritieertrreereeaaae aeeaaesarasaasrnnssesaantresseneesaeanseanns 54
Prolonged TranSacCloNScccciiiictiiiictiiierniener s sevameeeiennneeeees 54
iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Complex Objects (Directed Graphs).........ccceevceeininniiicniicennnen, 56

The One-Level Store AbSIraction...........ccccoeeeviieiieiiiieeeeieeee e e 57
Classes and Their SetS...cccuuiereieee e eee et 57
ODbJECt DIGLIONovveeieeiiirrceicreciiier v eee e e arae e eerereeeeees seveeeraseaeannns 58
[[aTo [)41 1 [o SO P U PPSRRPPS 59
Class ModifiCatioNS..........cceeieueiiieciiiie et ee e 60
4.2.A Data Model Which Supports Objects..........cccoveiiniiiiiiini 61
Object Identity and Directed Graphscooovveiiiiciiiieieie e 63
Heterogeneous RECOTTS.........cuiee e et e e e e e vt e e e e e e e 64
Multi-Valued AtTbULES ...coeeeieii e et e e 66
4.3.GemStone: An Object-Oriented Databaseccccccovevevineeeiiinniieieccieeccn 68
Session and AcCeSS CONLIOL..........ooeeiiiieiir e 72
ConcUITeNCY CONMIOL ... eerees = ceeerianeaeaeeens 72
Collections and INAEXINGc...ceriiiieiiiiiiee e ee e v rer e ee e et bene e ene e 73
QUBIYING . ceeeee ettt ee e e eertt e e e e e ee e ime e seseeesees e sssmnreeaeaessaneen seanenscnrens 74
Garbage ColleCtiON.......ccceeiieeie et ae et ee e e aes 74
5. DESIGN ISSUBS....evuieeeeeeeeiiicntrcesi e re e s s ab e e ae s soss bt se e s ra et aaree st ae e st bbbeeseaan s s sanesveaaas 75
5.1.Design Goals and CONSITAINIScoeiiimriiiimiiiieemiiii vt et e 76
IMMEAIAIE GOAIS....eeeeiietiieieeceeiieee e e eee e s te e e e e asae e e e eeineaeeeacees 76
LONG-TEIMM GOAIScutuiiieiiiieiiiiieieeeiree e eeee e et eetes s et 79
5.2.The BasiC ArCHItECIUIZ ... et eee et ee e e aeeertan e seeenene 79
5.3.The Data MO ...ttt e e e e e e e e e e eeaneaees 83
ODbjJECH IABNLIY ...oveneeeieeee ettt et e ettt e 83
OBJECE TYPING .- ceveeeee vttt st et e 85
DAt Ty DS -t ettt e e e 85
ComPIEX ODJECIS ... ettt et e et e e et re e et an 87
Multi-Valued ARMDULIES e 30
Fersistence Granularitycooccvueeeiemimiiiici e e e 90
6. The .anguagz to Object Server INterfacecov i e, 93
6.1.The Building Biocks: ZIM and Objective-C............cccovieriiiiniiiiieein e 93
The ZIM Programming Language Interfacecc. 93
ZIM BaSICS ..ceeeeiieeieeiee e eee e et en e 93
WHY USE ZIM7 ettt 93
ZIM Objects (Record StruCture)ccoccuemriiiiiiecomiiiiieiise e 96
ZIM Multi-USer SUPPOTtcooviiiiiiiiiiiee e e 97
MOre 0N ODJECHVE-C..o.ovveriieeriiieiiiiens eeeiiieie s st ee s e e st sane e enan e sns 98
Data Representation of ObJectS oo 99

Objects and C StrUCIUIS........ouviviieiiiieeiriieciiiece e 101

Violating ENcapsulationcccvucviiiieei e 104

Memory Management.ccoevrmriiini i 105

The Message-Passing Mechanism ... 107

Object Persistence Mechanisms Provided by Objective-C.......... 111

Why They Are Not EnOugh ... 111

Linking Classes with the Application...........covveeiiiinn 112

6.2.The Object Server/Language INterface............cccevuvviiiiiieniinnniiin e 1114

ProxXy ODJECIS. .. eeiciuireitee ettt e 114

Intercepting Messages: Changes to the Objective-C Messaging

(=142 =1 PSPPSRI PP PP 118

Polymorphism and the Message Cache 121

The Dangers of Violating Encapsulationcccooooinnnn 125

7. THE ODJECIMANACET . ¢.veveeieeatentesieieitess e s sae s eae et a bbb e 127

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.1. The ObjJeCt SChEM@cuoueeeieeeee e ieeeeecceeie ettt eea e e e e e aeae s e eaaesnaeaeens sees 127
DefiniNg @ ClaSS....cccuunn ettt r e erre et s s 128
Supporting INhErANCE.......coveiciceieiccicrrere e ree e ee e iiie ceeesre s rs s seeeranesrre i 130
MEIAAALA ACCESS - ..onieeiieeiiiiee e e eeee e et e e et ere e ettt e se e seeeniesssenieraraseesaes 133

7.2.An Objective-C Protocol for the ZIM Pl e 134

7.3. Initialization: The Database R0oot ODJeCH.........ccooviiiiviiiriiiimrcie e 139

7.4. ReCOrds 10 ODJECIScuiviireiiiiiiiieiireieeiet e iearerviessieesesssaseeesesseaecebtasearenrasasassnen 140
Other Object Representations and Their Access Methods......................... 146

Custom-Defined Access Methods ..o 147
Te V.Y 4 7 1 PSRRI PSR 148
L0761 11:To} (1o T s IS OO 151
33 {4 13T O PPORS PR 152

7.5. Writing Objects 10 the ObjeCt BaSEceeeieieeieeieieeeiee e eeriee e eee e enas 153

7.6. The Proxy Table......o.oee ettt et ettt e e e e et e ra e e eennes 155

7.8.A Browser for the SChemMa.. ..ot s e r e e s e mneas 158

7.9.USING the ODJBCt SEIVEN ... ettt e e s et e ea e eeaemeeanas 160

B. CONCIUSIONS ...t eeiiees ceteiiee it ee e e et veee st e aee e e eare e s e aseesa e eeae st esasnnestraanssnsansnnnnnnnn 163

8.1. Meeting the GOaIS.......ccooieeeeiiriiceie et e eevieeee e e vatanr e eeees e e eenes 163
Persistent ODJECHS........oucviiiii vt e e r e e ae e e 163
Integration With ObjJecCtive-C 166
Effectiveness of the Object-Oriented Approach........cccccveverriiiieciiiearvenennns 167

8.2, FUIUIE RESEAICH ...ttt e e e e e e e se e eee e aa s 168
MISCEIANEBOUS ...t ettt e reete e e es et ra e st ae e renes 168
MUHI-USEBI I1SSUBS. ...t e e e e et e et e e e e naaeneaeees 170

Software Design TransacClionS.........ccoceivimimieriirnieieeie e eenn 170
The Granularity of Object Access: Defining Composite
(07 o T1-70) - J O PP UORPSPPPRN 173
Making Objective-C a Database Programming Language..............ccccc...... 175
Buffer and Segment Management in a Single Object
e T=T o ToT-7] (o] oV RO UUU PSPPI PTUPPINE 177
Implementing Persistent Objects Using an Object Table............. 179
R BT EINICES ..o ive ittt er et ee s e e ae st e e eeaas s iesene e e an e et e s beeae e e e n e rabs te et e e e nness 185
Vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Figures

Figure 1.1 Design Notations p. 8
Figure 1.2 Inheritance Hierarchy p. 9
Figure 4.1 a) A Normalized Relation p 62
Figure 4 1b) A Fully Decomposed Relation p. 62
Figure 4.1 c) Representing Graphs Using the DSM p. 64
Figure 4.2 a) Heterogeneous Relations p 65
Figure 4.2 Db) A Normalized Representation of a Heterogeneous Relation p. 65
Figure 1.2c) A DSM Representation of a Heterogeneous Relation p 66
Figure 4.3 a) Multi-Valued Attributes p. 67
Figure 43 b) A DSM Representation for Multi-Valued Attributes p 68
Figure 4.4 The GemStone Architecture p. 71
Figure 5.1 The Object Server Architecture p 82
Figure 5.2 Persistent Object Representation p 84
Figure 5.3 Representing Complex Objects p. 89
Figure 5.4 a) Defining Multi-Valued Attributes p. N
Figure 54 b) Representing Multi-Valued Attributes p 92
Figure 6.1 Using an Object Table p. 100
Figure 6.2 a) Reading an Object {Before) p 117
Figure 6.2 b) Reading an Object (After) p. 118
Figure 6 3 The Objective-C Message Cache p 124
Figure 6.4 Dealing With Proxies Explicitly p 126

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

F:gure 7 1
Figure 7 2
Figure 7 3
Figure 7 4
Figure 7.5
Figure 7 6
Figure 7.7
Figure 7 8
Figure 7 9
Figure 8 1

Figure 8 2

Supporting !nhentance

Manipulating the ZIM Database from Objective-C
Reading an Object

Representing Persistent Objects

Representing IdArrays

Representing Strings

The Proxy Table

The Class Browser

Using the Object Server
Representing ARTTisan Objects

Object Table Memory Management

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Introduction

1.1. Motivation for the Research

As computer-based systems have become targer and more complex, much of the

research in computer science and software engineering has gone into tools and methodologies

to improve the manner in which they are specified, designed and implemented The goals of
researchers in many seemingly different facets of software technology are often remarkably
similar. A few examples of issues being addressed are: the complete and accurate specification
of requirements and their communication to the implementers; the design of an effective solution
to the problem at hand; the efficient use of both computer and human resources tor the
implementation, operation, and maintenance of the system; and the management of change
during its entire life.

It has been argued persuasively (Brooks, 1987), that creating software systems to solve
large and interesting problems is inherently complex. There is no undiscovered magic that w!
make the process suddenly faster or easier; any improvements will be in increments of
percentages, rather than orders of magnitude. However, as computers become more pervasive
in society and as they are called on to perform more challenging functions, software 1ssues such
as reliability, maintainability, and malleability are becoming more critical Two areas of research
which address these concerns are software methodologies and tools

Software methodologies provide a consistent approach to the specification, design, and
implementation of systems. They are the principles by which software engineers build therr

systems. One software methodology which has been the focus of much interest in the last

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

decade 1s the ‘object-oriented' approach. This paradigm has been used to design and build
systems, to create new programming languages, and as a data modeling technique.

Software tools - commonly referred to as Computer-Aided Software Engineering (CASE;
tools - attempt to automate as much of the software process as possible. Software is a labour
ntensive endeavour, and software engineers are expensive. As a result, there is on-going
research into automating virtually every facet of the software process. Some examples include:

* project planning and control,

» change and configuration management,

« specification and design capture (using one or more methodologies),

+ source code control and version release,

« performance analysis and testing,

+ documentation.
While individual CASE tools are cer'ainly useful, an even more important goal is the develcpment
of CASE environments, where multiple tools can work together in a seamless fastion. Perhaps
the greatest motivation for CASE environments comes from the need to handle cha~ge. For
example, keeping documentation up to date with changes in the source code is done best when
there exists a tool which creates and maintains the dependencies between them. CASE
environments are a prornising technology for dealing with large, complex and multi-person
software projects.

One of the major requirements tor the creation of a CASE envircnment is that the tools
supported be able to share data between them. As a number of researchers have noted (Wile

and Allard. 1986), (Belkhatir and Estublier, 1986) (Gallo, Minot and Thomas, 1986) (Atwood,

1985). the best way to achieve this is through the use of an integrated database system.

EEESE—————— e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.2. The Application: The ARTTisan Toolset

The goal of this research is to provide a stable, persistent object store for a Computer-
Aided Software Engineering (CASE) environment being developed at the Department of
Systems and Computer Engineering under the auspices of the Advanced Real Time Toolset
(ARTT) project. The environment is based on a network of SUN workstations running Berkley
UNIX. While the ARTT project includes a number of different thrusts, this work primarily
addresses the needs of the integrated toolset known as ARTTisan.

The following sections briefly describe the ARTTisan toolset and the design notations
that it supports.
The Tooisat

ARTTisan attempts to meet the design needs of a programmer developing real-time
software. |t is primarily targeted to addressing the needs of ‘programming-in-the-small’, as it
presently has none of the communication and co-ordination facilities (such as project planning
and tracking, etc.) required to support teams of programmers working together on large software
development efforts {‘programming-in-the-large").

ARTTisan presents the developer with a hierarchy of notations, each of which piays a

different role in the design process. Each layer in the hierarchy of notations represents a further

refinement in the design. The initial layer is highly abstract, with each of the additional layers
becoming more detailed. The design notations are tightly coupled, in that symbols in one of the
notations may be related to symbols in one or more of the other layers. For example, ataskina
process model may be further specified by a structure graph, and a procedure within the structure
modei may be further described by a state machine model. Each of these difterent notations has

a separate foo/ associated with it, and the too/set is comprised of these

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A major goal of the toolset is to have the different design tools integrated: Changes in
one layer of the design should be automatically reflected in the other layers which are related.
One way to accomplish this goal 1s to share a common, »ersistent data store. Previous
generations of the ARTT toolset had used a filter-based approach to inter-tool communication.
Data representing a design done in one of the tools would be massaged into the format expected
by the next tool in the de.ign process. This waterfall approach made it difficult to co-ordinate
revisions between the different tools: filters, unfortunately, rarely work in reverse. Using a
common, shared data store aliows the toolset to deal directly with changes made at each level.
Enhancing the data store to allow concurrent, multi-user access would also be a first step towards
an environment which supports a more team-based approach to software development.

The user interface for the toolset is based on the graphical, direct manipulation paradigm.
lcons representing the symbols of the design notations are manipulated by the designer using a
pointing device (mouse) and keyboard. In its present form, the toolset is written entirely in
Objective-C, using SunView to handle the graphical interface. Aithough the toolset itself is
implemented using an object-oriented language, it should be noted that the design notations
supported by the toolset do not support the object-oriented methodology.

Tool integration is provided by highly inter-related, compiex objects which implement the
behaviour and maintain the relationships between the various toolset components. Figure 1.1
iMustrates some of the symbols used in the various design notations, while Figure 1.2 shows
some of the classes which implement the toolset. The basic approach is to treat each design
notation as a directed graph, possibly with cycles. This allows a common approach to the
implementation ot each of the different notations. The nodes and arcs of the graphs have a

speciiic meaning and representation within their tonl, and {»ossibly) with the other tocls in the

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

toolset as well. Each node and arc is modelled using three complex objects: its display object,
which defines how it is viewed graphically and manipulated by the user; its logical object, which
impiements its behaviour and maintains its relationships with the other objects in the toolset; and
its tool component object which binds the display and logical components together.

Viewed in this way, each tool may be implemented as a collection of nodes and arcs of a
certain type, along with methods which enforce the rules and constraints of the design notation.

As can be seenin Figure 1.2, many of the objects are complex and highly structured,
including a number which are comprised of collections of other objects. However, some of the

objects in the toolset are also of the large, unstructured variety - such as graphics or text.

—_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1: Design Notations

Layer 1: Task Diagram

Task 7

3,

5

L
Package Task B

Task
Pool

Layer 2: Yourdon Procedure Diagram

Procedure 0

Frocedure A

Procedtira C

y y
Procedure B [d—]
Layer 3: State Machine Diagram
A
C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2

Notational Conventions:

followed by a list of instance variabies, enclosed in ()'s
+ The inheritance hierarchy is shown by the indentations
* Instance variables enclosed in {}'s represent collections

System (name, processModsl)

Tool {{nodes}, {arcs}, startingNode)
ProcessModei ({dataStores})
StructureMode! ({lcp}, {dataStores})
StateMachineModel

ToolComponent (displayObject, logicalObject)
Nodse

ProcessNode
StructureNocde
SMNode
Arc
ProcessArc
LogicalToolObject
Node ({toArcs}, {fromArcs}, label)
ProcessNode ({entries}, {lcps})
Task (structureModel)
TaskPool
Package (structureModel)
TaskGroup (processModel)
DataStore
LCP (task)
StructureNode
SMProc (stateMachineModel)
Proc (fleshCaode)
SMNode
States
FSMEntry
FSMReturn (returnValue)
TaskEntry
TaskEnd
SMFCall (SMProcedure)
Arc ({dependents}, toNode, fromNode, labsel)
ProcessArc (toDataFlow, fromDataFlow)
MessageArc ({ProcMsgArcs})
StructureArc
ProcedureCail
ProcMsgArc
SMArc
StateTraruition

+ Each line represents an Objective-C class definition: the class name is first,

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

——_‘

10

1.3. Overview of the Research
This research has the following major goals:

» Provide a persistent object store for the ARTTisan toolset. This goal has a largely

pragmatic motivation, since a persistent object store is required if the toolset is to be
integrated.

« Evaluate the object-oriented approach to software engineering - both as a design
methodology and as an implementation technique.

+ Since the toolset is implemented using the Objective-C language, the object server must
be consistent with the language and tightly integrated with it. Furthermore, since the
toolset itself is being developed in parailel with the object server, the persistent object

facilit, should be provided in a manner which is transparent to the toolset code.

For the initial implementation, the object server is to be a single-user tool. However, the
implementation must allow for future extensions to provide multi-user suppont.
These goals were met by the design and implementation of the persistent object server for
Objective-C described in this thesis. The object server has been successfully integrated with a
subset of the ARTTisan toolset. The major strength of this work are:

« It meets its primary goal of providing a persistent object stere for the ARTTisan tooiset.

Objects may be stored and retrieved from the object base.

+ The object server is transparent to the toolset code. For an example, persistent objects

were provided to an existing subset of the toolset with only one line of code requiring

modification. The tooiset benefits from what is referred to as locational transparency -

applications written using the object server do not have to know or care it an object is

located in memory ot disk at any point in time.

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

« The functionality provided by the object server has been provided with only minor
changes to the Objective-C run-time <ernel. No changes were required to the Objective-

C compiler.

Outline of the Thesis

This thesis is organized as follows: Chapter Two introduces the reader to the basics ot the
object-oriented approach; and Chapter Three discusses the research into object-oriened
catabases. These two chapters may be omitted by a reader already familiar with these research
areas. Chapter Four tumns to the issues involved in implementing object-oriented database
systems; Chapter Five discusses the design goals and issues for this work, and serves as an
overview of the implementation; Chapter Six discusses the interface between the persistent

object store and the Objective-C language:; Chapter Seven presents the detailed design and

implementation of a persistent object server for the Objective-C language; Chapter Eight

presents the conclusions of the research and identifies areas for tuture research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

2. Object-Oriented Concepts

2.1. The Object-Oriented Approach

The basic notion of objects as they apply to computing is that they are abstractions of
some entity, tangible or intangible, that is of interest to the designer. As such, they are a model of
some thing that the designer wishes to simuiate. One proposed definition of objects considers
them to be "anything nameable" (Power and Weiss, 1988; p. 46). A more manageable definition
of objects can be found in (Liskov, 1988).

Liskov's view of objects may be summarized by the equation:

Objects = Abstract Data Types + Inheritance

In this view, objects are extensions of data abstractions created by the software designer. They
combine the properties of both procedures and data, since they perform computation and save

local state (Stefik and Bobrow, 1984). The key idea is that:

"Object-oriented programming is primarily a data abstraction technigue, and much
of its power derives from this. However, it elaborates this technique with the
notion of “inheritance"....[used carefully] inhesitance provides a useful addition to
data abstraction.” (Liskov, 1988; p.18)

While objects can be understood in terms of data abstractions and inherite..ce, that alone
is not enough to fully understand the entire object-oriented approach to software development.
The key additional concept is the notion of computation via message-passing. This computational
metaphor 1s used in two of the most popular object-oriented programming languages, Smalitalk
(Goldberg and Robson, 1983) and Objective-C (Cox, 1986)

The following sections describe data abstraction and inheritance, as they relate to the
object-oriented approach. In addition, the message-passing computational metaphor is

presented

e |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

structure code found in programs written in more traditional languages. The testing of data types

is now under the control of the procedure calling mechanism, rather than the programmer.

2.2. Object-Oriented Programming Languages
Smalitalk

Obiject-oriented programming finds its historical roots in the language Simula. However, it
was wiih the Smalltalk-80 (Goldberg and Robson, 1983) system from Xerox's Palo Alto Research
Center (PARC), that first brought the term ‘object-oriented' to the attention of most software
engineering researchers and practitioners. It was an important development in the computing
field, and has had an enormous impact on the industry. The research that went into the Smailtalk
system pioneered many concepts which are now considered standard: pointing devices, such as
the now ubiquitous mouse, graphical user interfaces, and over-lapping windows all find their
roots in the Smalltalk effort. It remains as perhaps the most consistently object-oriented
programming language. As such, all of the characteristics of the object-oriented appreach
described in the previous section apply to the Smailtalk system.

Smalitalk is more than just a programmiing language. Itis an entire environment built on
the principles of the object-oriented methodology. There are four aspects of the Smalitaik
environment (Rentsch, 1982): the programming language kemel, which comprises the Smalitalk

language compiler and byte-code interpreter; a programming paradigm, which is the message-

passing metaphor; a programming environment, which includes such tools as a debugger,
editor and code browser, as well as a iarge class library; and the model-view-controller user
interface model, which includes a number of classes for creating graphical end user facilities. 1t is

important to note that these are not discrete units, they are inter-mingled and overlapping.

— e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

representation of the object within a set of operations. Users must use these operations to
manipulate the object, rather than modifying the object's representation directly. This allows the
separation of the object's behaviour from its implementation. Users of the object are restricted to
knowing what operations an object wiil suffer, without knowing how they are performed. As a
result, no object is dependent on the implementation details of other objects. This dramatically
increases the robustness of the resulting system, since objects can be modified or re-
implemented with minimal effect on other parts of the system. Encapsulation ensures that the
code to perform a particular operation occurs only once - in the implementation of the type. This
dramatically reduces code bulk, and simplifies change.

Software development using objects requires a fundamental shift in viewpoint. Obijects
are viewed entirely from the outside; as a result, when using an object, the developer is
concerned with what it is, rather than how it is. Rentsch (Rentsch, 1982) notes that in Smalltalk,
what is even more important is that the concept of getting ‘'inside’ an object to examine or modify
its state does not even exist in the language. Thus, objects are truly encapsuiated in a purely
object-oniented programming language.

Locahty

One important side-effect of gata abstraction and encapsulation is the property of iocality.
"Locality allows a program to be implemented, understood, or modified one module at a time.”
(Liskov, 1988; p. 20). Once an abstraction has been specifieq, its implementer and the
implementers of other abstractions which use it, or are used by it, require minimal interaction.

Everyone knows what to expect from the abstraction, which is the specified behaviour. This

supports '‘programming-in-the-large’. That is, it aids in the development of large, complex

systems by teams of programmers. Developers can work on specific data types, without being

e —————

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

concerned with the implementation strategies of others, since each can be understood in terms
of its specification.

Locality also allows the system to be reasoned about (and hence, modified) one moduie
at atime. The clear delineation of objects provided by locality allows the developer to concentrate
on what must be done, rather than on what must be left alone.

Two key features which have become identified with the object-criented approach result
directly from the property of locality (Liskov, 1988). The first of these is fast prototyping, whereby
a demonstratable system can be created quickly. This is due to the fact that objects can be initially
implemented using simple representations and straightforward algorithms. As the system
matures, the object implementations can become more sophisticated and robust.

A second, and closely related feature resulting from locality, is the support for program
evolution. Requirements inevitably change over the life of a system; however, it is possible to
structure the cbjects such that the effect of changes can be localized to their c/ass.
Classes and Instances

In order for a programming language and/or environment to support data abstraction,
there must exist facilities to add and use new data types. In Smalltatk and Objective-C, the primary
tool for doing this is the class. Classes prcvide the designer with a tool to add new data types, 1o
define their structure, and the operations that may be performed on them. A class is a description

of one or more like objects, whi~h are referred to as instances of the class. Structure is defined

by specifying the instance and class variables of instances; behaviour is defined by specifying the

methods that they can perform.

-]
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

A class identifies the common properties of its instances. The operations that objects will
perform are defined for the class, but only have an effect upon instances. The process of cre>ting
a new instance of a class is referred to as instantization.

All objects are unique instances of some class; which gives rise to the notion that all
objects have the property of igentity. Every object has a (possibly system-defined) name which
remains constant regardless of any changes in the object's state.

Linguistic Support

One of the greatest advantages in using object-oriented languages is that the daia
abstraction methodology is directly supported. There exists linguistic support for the definition of
classes, for the binding of operations to data types, and for information hiding.

In Smalitalk, all data items are objects, including such primitive data abstractions as
integers and characters. The resuit of making such primitives objects is a highly consistent
programming environment: all items in the system are objects. Higher-level data abstractions (ie.
user-defined objects) have exactly the same rights and privileges as system-provided ones.
Furthermore, since all of the features of the language and its environment are implemented using

objects, the usual dichotomy of system or language functions versus user-defined functions

does not apply
A Obi

Once objects are the sole tool of abstraction, it is natural to view objects as being
aggregates of other objects. Thus a composite object must deal with its subcomponents using
the operations which they, inturn, have provided. Eventually, these layers boil down to the

system-implemented objects. This hierarchy of abstract data types is referred to as the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

aggregation/decomposition hierarchy. Inthe Antificial Intelligence area, this is also referred to as
the part-of relationship.

Two important side-effects of viewing complex objects as aggregations of other objects
are:

« An object may be a sub-component of several objects simultaneously This structure-
sharing is a powerful tool for modelling real-world entities, since different objects can
share the concepts that they have in cornmon. It should be noted that structure-sharing is
greatly facilitated by the identity property of objects, since the references to objects are
based on the identity of the object itself, rather than the value of some attribute.

+ The subcomponents of an object may be other objects of arbitrary complexity. This is very
different from the traditional approach where the attributes of a user-defined data type
must be one of a small set of system-supplied data types (ie. integer, character). Itis a
powerful abstraction technique, one which allows the designer to easily and naturally

layer both the design and the implementation of the objects in the system.

Objects which form collections of other objects are a special case of composite object,
since their existence forms a relationship between their member objects. Objects which are
members-of the same collection are said to share an association refationship.

Inheritance

Every class is a specialization of some other class, referred to as its superclass Each

class, then, is said to inherit the structure and behaviour of its superclass This forms what 1s
generally referred to as the class hierarchy. At the root of this hierarchy is the class Object, which

defines the propertics common to all objects in the system. New classes are defined as

R
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

specializations of existing classes. This abstraction technique allows new concepts to be added
quickly to the cystem as refinements to existing ones. It allows programmers to work in an
incremental fashion. Since a class inherits the behaviour of its superclasses, new code must be
written only for those aspects that make it unique, thus decreasing the amount of redundant
information.

Ditferent object-oriented languages support either single or multiple inheritance. In the
former, a new class inherits its properties from a single super-class. in the latter, a new class may
be defined by mixing the structure and behaviour of several classes. Thus, under single
inheritance, classes are organized into a tree structure, while in multiple inheritance, classes are
organized into a directed graph (often called a class fattice).

Inheritance, as described here, is one implementation of the data abstraction technique
known as specialization/generalization. Generalization is the abstraction by which the common
propenties of several different classes are represented as a generic class. The constituent ¢c'asses
are said to be specializations of the generic class and inherit its properties. This abstraction
establishes an is-a relationship betweer. the objects. For example, Managers and Secretaries
may be considered as specializations of Employees and would inherit such attributes as Name,
Address and Salary from the higher level abstraction.

Message FPassing

Under the object-oriented approach, computation is performed by the sending of

messages between objects. Processing activity takes place within the object itself, but only afier
it has been initiated by the receipt of 2 message. A message is a request for an object to perform
some operation, the meaning of which is dependent upon the class of the object that receives it.

Difterent classes will perform different actions given the same message. What is done upon the

MM SRR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

receipt of a message is based on the method (procedure) which the class implements as a
response {o that message. Resolution of what action will be performed, based on a given
message, is typically performed at run-time.

fror most, programming in an object-oriented fanguage will initially seem quite ditferent.
All state is captured within objects, and the only way to accomplish computation is to use the
messages to which the object will respond. Programs are created by passing messages to
seemingly intelligent objects which perform some computation; they, in turn send their message
requests to other objects to extract data or to have some additional computation performed. While
proven effective, this paradigm is quite different from the more traditional procedural approach.

There exists a subtle difference between the semantics ot a procedure call and a
message request (Rentsch, 1982). Under the traditional imperative approach, there exists an
assumption that the calling procedure is somehow 'in controf’ of the called procedure.
Conversely, a message is more accurately viewed as a request by the sender. The receiver object
is totally responsibie for the interpretation of the message and for ‘doing the right thing’;
hopefully, meeting the wishes of the sending object. Control is relinquished to the receiving
object both conceptually and actuaily.
Bindings, Protocols and Polymorphism

All objects are instances of some class, and in this sense, all object-oriented languages
are strongly typed. However, in both Smalltalk and Objective-C, the objects themselives are

typed rather than the slots which hold the objects. For example, in most languages, when a

variable is declared, its type is immediately disclosed to the compiler. In Smalttalk, when a vanablc

is declared, it is known only to be an object. As a result, the type of an object is unknown until

e ———————
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

run-time. Other object-oriented languages, such as C++, follow the more conventional approach
and support the compile-time binding of objects to types.

The methods which implement operations specified by messages are bound to the
object classes, rather than to some global name space. As a result, different object classes may
have functions (methoc's) with the same name. Since the type of an object is typically bound at
run-time (as in Smalfalk and Objective-C), which method a message is calling can only be
established then. This is generally referred to as the Jate-binding of messages.

Message sends are quite different from conventional function or procedure calls. In the
latter, the name of the function is bound to a location in memory which is named in the program's
symbol table, and the location is specified at compile-time. A function call is made up of the name
of the function, and the parameters being passed to it. When the function is called, the
parameters are placed on the stack, and control is branched to the specified memory location.
Since the symbel table is typically global, function names must be unique. Methods, on the
other hand, do not have unique names. It requires a <class, message selectors pair to uniquely
identify the memory location where the method implementation resides. The message selector is
a character string which names the method. A message send is made up of the object which is
receiving the message (the receiver), the message selector which identifies the uperation

desired, and the parameters being passed to the method. Finding the address which

implements the desired operation requires a table lookup.
One interesting side effect of late-binding is that it simplifies the creation of an incremental
compiler for a language that implements it. Since all procedure addresses are resoived at run-

time, a method may be re-compiled without impacting all of its callers (Duff, 1986). This furthers

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

the goals of encapsuiation and locality. On the other hand, late binding allows some errors in the
code to remain undetected until run-time.

Late binding has some obvious performance penalties. Since the address of a function
must be looked up at run-time, every procedure call iimplies some sort of searching. This is more

expensive than simply branching to a pre-determined address, as is the case with traditional

languages. This performance penalty is compounded by the fact that the message-passing
paradigm resuits in a programming style which calls for a great many message sends. Lately,
there has been a great deal of interest in performing more compile-time bindings. For example, in
C++ (Stroustup), objects are strongly typed and as a result, messages may be resolved at
compile time,

As a result of these binding mechanisms (ie. the static binding of methods to object
classes and the run-time or dynamic binding of message sends to these methods), different
object classes car share a message protocol. A protocol is a standardized set of messages used
to implement a desired functionality. Two classes which implement the same set of messages are
said to follow the same protocoi.

"There is additional leverage for building sysiems when the protocols are
standardizec. This leverage comes from polymorphism. In general the term
polymorphism means "having or assuming Jdittcrent forms,” but in the context of
object-oriented programming, it refers to the capability for different classes of
objects to respond to exactly the same protocols. Protocols enable a program to
treat uniformly objects that arise from different classes. Protocols extend the
notion of modularity (reusable and modifiable pieces as enabled by data-

abstracted subroutines) to polymorhpism (interchangeable pieces as enabled by
message sending).” (Stefik and Bobrow, 1984 p. 41)

Polymorphism then, allows different classes to perform similar operations, despite
otherwise different representations. This is a powerful technique for the programmer to treat

ditferent classes in a uniform manner. Furthermore, it negates the need for much of the control

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

structure code found in programs written in more traditional languages. The testing of data types

is now under the control of the procedure calling mechanism, rather than the programmer.

2.2. Object-Oriented Programming Languages
Smallitalk

Object-oriented programming finds its historical roots in the language Simula. However, it
was with the Smalitalk-80 (Goldberg and Robson, 1983) system from Xerox's Palo Alto Research
Center (PARC), that first brought the term ‘object-oriented' to the attention of most software
engineering researchers and practitioners. It was an important development in the computing
field, and has had an enormous impact on the industry. The research that went into the Smailtalk
system pioneered many concepts which are now considered standard: pointing devices, such as
the now ubiquitous mouse, graphical user interfaces, and over-lapping windows all find their
roots in the Smalltalk effort. It remains as perhaps the most consistently object-oriented
programming language. As such, all of the characteristics of the object-oriented appreach
described in the previous section apply to the Smalltalk system.

Smalitalk is more than just a programming language. Itis an entire environment buiit on
the principles of the object-oriented methodology. There are four aspects of the Smalltalk
environment (Rentsch, 1982): the programming language kermei, which comprises the Smalitalk
language compiler and byte-code interpreter; a programming paradigm, which is the message-
passing metaphor; a programming environment, which includes such tools as a debugger.
editor and code browser, as well as a iarge class library; and the model-view-controller user
interface model, which includes a number of classes for creating graphical end user facilities. !t is

important to note that these are not discrete units, they are inter-mingled and overlapping.

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

Smallttalk is a ‘pure’ object-oriented language. As such, it is typified by the 1-!c ving

characteristics (Rentsch, 1982):

* unlformity of abstraction: All items in the Smalltalk system are objects, running the
gamut from those usually considered to be primitives - such as integers and characters -
to such esoteric data types as ProcessScheduler, SortedCollection and BitBit. Even
more interesting, the language itself is implemented using objects. Therefore, such
things as contexts, classes and messages are also objects which may be manipulated.
This uniformity makes it easier to implement tools such as debuggers to support the
language and trowsers to support additions and modi’.cations to the class hierarchy.
Since everything is an object, there iz no distinction between system supplied data types
and those created by the programmer. There are no 'second-class citizens'. As a result,
it is straightforward to implement new classes which are specializations or aggregations of
the classes supplied with the Smalltalk image. This results in much of the time-savings
typical of developing systems with Smalltaik.

« uniformity of computational metaphor: Smalltalk uses the message-passing
metaphor. All processing results from the sending of messages between objects. This 1s
applied consistently, to the point where arithmetic operators between integers are
considered messages.

« uniformity of reference: In Smalltalk, the only way to reference an object is from the
outside, using the messages toc which it will respond to. There is no way 10 ‘peek’ inside
an object to view or update its underlying data structures. At the same time, all variables

use associative access; variable names refer to pointers, rather than to objecis directly.

| _

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

The consistent application of this approach means tha the 'dangling pointer' class of

software bugs no longer becomes an issue.

The following is a list of interesting points and implementation details concerning the
Smallitalk language. The reader should note that many of the details presented here will be
referred to later in the research.

+ The language is implemented using a byte-code interpreter. Programs are compiled to an
intermediate language (as opposed to the machine language native to the hardware)
comprised of single byte instruction codes. These instructions are then executed by a
‘virtual machine’. This approach results in a more efficient interpreter.

» Garbage collection is used to free the programmer from the burdens of memory
management. This is considered a key feature in terms of the ease of applications
development and systems reliability, although it can obviously have an impact on
execution performance. It should be noted, however, that newer Smalltalk
implementations use a scavenging garbage collection technique (described in Duff,
1986) which signiticantly reduces the performance penaity associated with garbage
collection.

= Asis implied by the use of garbage collection, Smalitalk manages its own memory. One

key detail to note is that pointers to objects are not simpie pointers. All references to the
same object are via a single ‘object-oriented pointer (OOP). As a result, it is possible to
replace an object with an entirely new one and have all external references to it

automatically updated. This is performed using a become message.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

» Objects can send messages to themselves by referring to one of two special variables
known as self and super. Messages to self call the method implemented by the class of
the object, orits superclasses, it no such method is defined.

Messages to super cause the message look up routine to start with the object's
superclass. This allows behaviour to be specialized with a minimum of new code. For
example, one common usage of super is when a subclass must perform some special
processing to implement a message previously aefined by one of its superclasses.

Aten, the best way to handle this is to implement the specialized behaviour in a new
method, which then calls the superclass's routine to perform the more general process.
This is done by sending a message to super.

All of the source code above the virtual machine layer is available to be viewed and
modified. This makes the system very malleable. A programmer can not only create the
classes required for his own application, he can also modify all of the system classes
provided with Smalltalk, if required.

While the availability of source code is one of the benefits of Smalitalk, it also poses a
problem. It is ditficult to partition the Smalitalk environment in order to deliver a finished
application. Imagine, if you will, the dangers invoived in delivering an end-user
application - say a banking system - where the tellers can view and modity not only the
code that makes up their application, but the code for the compiler, graphics, disk 1O,
etc.. Fuithermore, it would be more space efficient if the classes that were not used by

an application could be excluded from the irnage delivered to the users.

Obiject persistence is handled by saving the heap to disk or other storage device. This

makes it difficult to allow data to be shared between muitiple users of an application.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Obiective-C

Objective-C (Cox) is a more recent language than Smalitalk. Itis a hybrid language, in that
it combines the efficiency and portability of the weli-known C language with much of the
expressive power of Smalitalkk. Objective-C message sends can be mingled with ordinary C
statements i~ the code; as well, ordinary C data structures can be mingled with objects. The
language is implemented as a pre-processor to the C compiler, along with a run-time kernel
written in assembler and Cujective-C. It comes with an extensive class library (although not as
large as Smalltalk’s) which may be used to develop applications.

Obijective-C supports the key concepts of the onject-oriented methodology, such as
classes, message-passing, polymorphism and inheritance. However, since it is based on C, it
lacks much of the consistency that is the halimark of Smalltalk. For example, the C-implemented
data types such as pointers, integers, etc., are not objects, as they would be in Smalltalk.
Obijects are added to C via defining one new data type, referred to as an id. Id's are first class
types in Objective-C, in that any operation that can be applied to a character pointer in C, can be
applied to an id (with, perhaps, some appropriate casting). Objects themselves are essentially C
structures.

The following is a list of interesting points and implementation details concerning the
Objective-C language.

» The language is compiled, rather than interpreted. However, in order to handle the late
binding inherent in message passing, there is a run-time kemel. Messages are compiled

to an ordinary C function call to the assembiler function msg(), with the object, its class,

the message selector, and the parameters to the message passed as parameters. Msg()

looks up the function which implements the correct method and branches to it, leaving

——————————

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

the method parameters on the stack. For added efficiency, the most recently used

mcthods are cached.

» There is no garbage coilection, so memory management is left in the hands of the
developer. The memory required for objects is allocated from the heap using the an
Objective-C protocol which ultimately access the regular C memory routines such as
alloc() and free(). As aresult, dangling pointer bugs can occur when objects are
deallocated.

+ References to objects are ordinary C pointers, not OOP's, as in Smalltalk. This means
that muitiple references to objects cannot be updated in a straightforward manner. This is
an additional source of dangling pointer bugs.

« Objects may be saved to disk. Complex objects will result in the saving of all objects

reachable from the root.

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

3. Object-Oriented Database Management Systems

3.1. Introduction to Database Management Systems

Database management systems (DBMS) are a well known topic in computer science and
engineering. Their importance can be seen by the fact that they exist for virtually all types of
computers, large and small, and by the amount of research interest dedicated to them.
Databases are distinct from most programming environments in that they deal with persistent
data. Persistence means that the data is stored in some non-volatile storage media (typicaily
disk), in contrast with nther environments where all data structures are in memory. Once data is
persistent, it is possible to separate it from individual applications. This gives rise to an important
side-effect of persistence: it allows the sharing of data between applications and users.
Furthermore, as will be discussed further below, this sharing can be sequential or ¢concurrent.

Not only are DBMS's concerned with the storage of shared, persistent data, they are
designed to efficiently access large quantities of data. While any operating system will deal with
»ersistent data through its file system, few do so effectively once there is a large amount of data.
The difference is that databases typically provide some mechanism for the direct access and
updating of data stored in files.

In addition to the efticient access of large amounts of persistent data, databases have a

number of common features. These include the support of data models and data abstraction,

language suppont, access control and resitiency.
Data Models and Abstractions
Database management systems will provide support for at least one data model, which

provides a mathematical abstraction with which to view the data. For example, the relational data

BRSNS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

model provides a set-theoretic view of data, with a well understood set ot mathematical operations
to manipulate that data; the network model is based on directed graphs.
Date (Date, 1983) defines data models to consist of the following three components:

* a collection of object types;

* a collection of operators;

* a collection of general integrity rules.
The object types provide the basic units of the data model; databases built from a particular data
model will consist of objects of strictly those types. The operators provide a mechanism by which
those objects may be accessed and manipulated. The integrity rules are a set of general
constraints to which databases using the data model must conform; for example, relational tables
must be normalized.

In addition to a data model, modern database svstems will generally support some notion
of abstraction fevels. That is, a number of layers of abstraction between the bytes being written to
the disk and the information being manipulated by the users. The most common mode! of
abstraction levels has three layers: physical, conceptual and view. The physical database level s
concerned with the files and indices that actually make up the storage structures of the database
The conceptual database level defines the structures of the physical ievel such that they are
meaningful in some way to the users of the system. In order to do this, DBMS's supply a data

definition language (DDL), which allows the definition of the data in terms of some data modei,

and some degree of control over the implementation provided by the physical level. It is also
common for the conceptual schema to be first defined in terms of some sort of higher level
abztraction technique (such as a semantic data model, described below}, and then transiated to

the data mode! supported by the target DBMS. The view (or subscheme) level provides a

_
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

mechanism to partition the conceptual database into views which are meaningful to a particular
user group. For example, the personnel department and the telephone operators would want
very different views of an employees database. Views allow the database designer to create
ohjects which are more complex than those defined in the conceptusi schema.

Levels of abstraction give rise to another commonly referred to concept in databases,
data independence. There are two types of data independence: physical and logical. Physical
independence implies that the physical schema may be modified with minimum impact on the
conceptial or view levels. This results from the fact that applications which access the database
do so via the DBMS; this level of indirection allows the underlying file structures of the database
to be modified without resulting in program changes. Logical independence implies, in a similar
fashion, that changes may be made to the conceptual schema with minimal impact on the
subschema level.

Language Support

High-ievel language support for data definition, manipulation and access are typically
provided by database systems. In different systems, each of these three facilities may be
provided by a separate language, by one language or by some combination thereof.
Furthermore, some database systems are intended to be used with a host language such as
COBOL, PL/1 or C.

(Ullman, 1888) claims that one of the key deveiopments in modern database technology
is the integration of the host and data manipulation languages. In other words, nega.ing the need

for some host language to write the application in. For example, even such recent database

access languages such as SQL require a host language like COBOL to provide the flow of control

logic needed to create a complete system. SQL statements embedded in the program interact

e —————————

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

KR

with the database, while the host language provides the contro’ structures, interacts with the

user and performs many of the data manipulations in program memory. The key problem with

using separate languages is that impedance mismatch may result (Zaniolo, et al). This occurs
when the host language and database language are based on different notions of computation

(ie. an imperative language mixed with a declarative query language) or have ditferent typing

systems.
Security and Integrity

Access control, security and data integrity facilities are also common in database
systems. The first two are concerned with controliing access to the data to ensure that it is not
corrupted by unintended or malicious use. Note that the view level of data abstraction is one
commonly used technique to provide access control; users are restricted to manipulate only
those views for which they are authorized. Data integrity facilities ensure that the values being
stored are reasonable. For example, a field to store a person's age would not be expected to fall
outside the range ot 0 to 150.
Concurrency and Transactions

Concurrent access to the data by multiple users, 'n either a time-sharing or truly
d'stributed environment, is one of the most important functions of database management
systems. Infact, the efficient sharing of data between multiple users is ane of the main
motivations for using DBMS's to store and inanipulate data, as opposed to ordinary file systems
Facilities to support multi-user access are typically implemented in terms of locking protocols,
schedulers and transaction managers. However they are implemented, concurrency schemes

are intended to ensure tha: concurrent transactions periormed by the users are senalzed. That

is, that they appear to have been performed in some sequential fashion, despite having been

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interleaved wherever possible. Serialization of transactions is critical because it ensures that each

user of the database deals with a consistent view of the data. Without serialization, it is trivial to
construct exampies of multi-user database transactions which have not been serialized whose
actions interfere with each other in such a way as to leave the database in an inconsistent state.

Transactions are user operations on the database which are 1o be applied atomically;
either all of the operations within the body of a ttansaction will be committed to the database, or
none will. Concurrency schemes common in today's DBMS's typically assume each transaction to
be quite short - a second or two, at most, and more normally some fraction of a second. As a
result, it is generally assumed that a transaction can be suspended momentarily (while waiting for
alock to be freed, for example) in order to ensure that serialization has been met.

Database locking is done to ensure that only one user may have access 1o a database
entity at any given moment. One of the most commonly used locking protocols is known as two-
phase locking. Date defines this protocol in terms of the following theorem (Date, 1983; p.

102):

"If all transactions obey the following rules:

one: before operating on any object the transaction first acquires a lock on that
object; and
two: after releasing a lock the transaction never acquires any more locks;

then all interleaved executions of those transactions are serializable."
All of the locks required by a transactions are done before any items are unlocked; once the first
item is uniocked, no more locks may be acquired by the transaction.

Since transactions may be made to wait until other transactions release portions of the
database, the DBMS is also responsible for the detection and resolution of transaction deadlock.

Deadlock occurs when two or more transactions are suspended while each is waiting for the other

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

to release data. For example, transaction A holds a iock on reccrd X and is waiting for transaction

B to release its lock on record Y. Simultaneously, transaction B is waiting for A to release its lock

on record X. This situation could remain unresolved forever. It is the database equivalent of the
infinite loop.
In summary, database transactions have the foliowing characteristics:

Duration: Database transactions are of short duration. Typically, they are designed so
that they last for a few seconds at most, to minimize the possibility that one user is forced
to wait for data being accessed by another. For example, interaction with the user is
usually not contained within the bounds of a transaction. This is to ensure that tive data is
not locked while the user is viewing it on the screen. For example, a program which

interacts with both the user and the databacse could have the following form:

user interaction 1
start transaction
databa~e update 1
if error then
abort transaction

database update n
if error then
abort transaction
commit transaction
user interaction 2

Consistency: Database transactions are the primary method of maintaining database
consistency. Implicit in this statement is the assumption that any transaction that commits

will leave the database in a consisternt state.

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Volume: Database transactions touch fairly small amounts of data (or at least only a few

tables). Large reports, dataloads and bulk changes are typically done off-line to minimize
their impact on user response-time.

Locking: If a record that the transaction wants to access is locked by another user, the
transaction is typically put into a wait state until that lock is released; muitiple transactions
waiting on a record are queued. Note that this implementation strategy is based on the
assumption that transactions are short in duration (otherwise users would be waiting for an
unacceptable length of time).

Concurrency: In a typical database application, there are many users and hence, may
transactions executing ccacurrently. There is a high orobabilty that the many concurrent
transactions may result in deadlocks occurring. Therefore, deadiocks should be
detected and resolved automatically by the DBMS - usually by causing one of the

offending transactions to abort.

Much of the function of a database management system therefore, is to provide some support for
the correct and efficient access to the stored data in a multi-user environment.
Resiliency

Resiliency in the face of some unexpected event, such as abnormal program termination
or media failure is also one of the tasks of a DBMS. Databases are expected to ensure that their
integnty is mamntained at all times, and when that is impossible, to provide backup and recovery
mechanisms to return to a consistent state. It shouid be apparent that transactions play an
important role in the ensuring the integrity of the database, since they are guaranteed to either

commit or ‘ail atomically.

-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

3.2. The Motivation for Object-Oriented Databases

Belore describing what is meant by ‘object-oriented database management systems', let
us first address the issue of why they are interesting. In other words, what is unsatistactory about
the present database technology that is driving researchers to look in new directions.
Why Relations Are Not Enough

The present state-of-the-art in database technology are those systems which support the
relational data model. Relational DBMS's have been well-accepted in the traditional application
domains of databases, such as business and accounting. There are a number of commercially
available relational database systems. Although these systems may differ in implementation
details, etc., they all share the same view of data. Recall that a data mode! consists of a set of
object types, a set of operations on those types and a set of general constraints. Given this
definition, the relational model may be quickly summarized as (Ullman, 1988), (Date, 1983):

+ Ali objects are tuples, or members of a relation. Relations are a concept from set theory
and can be defined as a "subset of the Cartesian product of a list of domains.....a domain
is simply a set of values, not unlike a data type." (Ukman, 1988; p. 43) Relations may be
viewed intuitively as tables, where the rows are the tuples (instances) and the columns
are the attributes {values drawn from the domains of the relation) of those tuples.

» There is a fixed number of operations on relations, based on either the relational calcuius
or the relational algebra, which are logically equivalent. For example, relational algebra
includes the operations of union, difference, selection, projection, and Cartasian
product. The result of any of these operations on a relation is another relation, which

then may be used as an operand to another operation. These operators have the

property of orthogonality; that is, none may be expressed as a formula consisting of the

__

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

others. This, inturn, leads to the conciseness of languages based on the relational
model.

» Relations, which form the conceptual schema, are constrained to te normalized.
Normalization provides an algorithmic way to construct relations from the objects to be
modelled by the database, such that each entity may be uniquely identified by a primary
key; turther, normalization avoids redundancy of data, which can lead to update
anomalies. The relational model is value-oriented in that it is the attributes of a tuple

which uniquely identify it, rather than some identity property.

Relational DBMS's also typically provide some mechanism {o construct views. Views

provide a mechanism to model complex objects which are not necessarily fully normalized.

"A view is defined in a relational model as a query over the base relations, and

perhaps aiso over other views. Current implementations do not materialize views,

but transform user operations on views into operations over the base data.”

(Wieuerhold, 1986; p. 37)
Care must be taken when manipulating database views. Although thev are themselves relations.
they are not necessarily normalized. As a result, operations performed on them may result in
update anomalies.

The relational model has a number of important strengths, as noted by (Ullman, 1988),
(Tsichntzis and Lochovsky, 1982), (Date, 1983) and others.

- It provides a simple and intuitive tabular view of data. This is particuiarly useful in

applications, such as accounting, where the data naturaily fits this mold.

+ As noted above, the results of operations on relations are, in turn, relations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

- It supports concise, yet powerful, declarative languages for operating on data. This is

partly due to the previous point, since operations can be nested easily, and also the

orthogonality of the relational operators.

« It supports the notions of data abstraction and data independence.

It relational DBMS's are performing <atisfactorily in many application areas, why is there a
need for new database technologies? First and foremost, databases are being called on to
support new and very different applications in such areas as Computer Aided Design, Computer
Aided Manufacturing (CAD/CAM), Office Automation, Artificial Intelligence and Computer Aided
Software Engineering (CASE). These appiications are characterized as having:

» large amounts of data of diverse types, including both large, unstructured objects such

as graphics and text, and complex, highly structured objects such as CAD designs;

+ complex end-user intertace requirements; and

+ a high rate of change in the application.
Many of (hese applications are being modelied and understood while the software that
implements them is being developed. Contrast this with the more traditional application domains
of comput--s, where the systems being developed have often been understood and performed
manually for many years. As aresult, the features of object-oriented programming such as rapid
prototyping, localization of change and inheritance make 1 better suited to these domains.

A number of researchers (Rumbaugh, 1987), (Zaniolo, et al), have commented on the
general unsuitability of relational database technology to deal with these new application areas.

Although the relational modet is an elegant, mathematically-based data abstraction, it provides

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

only one ievel of structure (the relation), and is poor at representing both highly structured,
complex objects and unstructured objects. This is largely the result of the following factors.

« Complex objects must be represented by tuples spread over a number of relations, rather
than by some direct representation. These tupies must be joined using relational
operators to form the entire object. As a result, much of the representation of complex
objects resides in the application code, rather than in the schema; further, it is difficuit to
manipulate complex objects as single entities. While the view mechanism, supported by
many relational DBMS's provides a way to represent these objects in a more natural
manner, the updating of views may result in update anomalies.

« The model is restncted to a small set of primitive data types - typically integers, characters
and dates - and there is no way to extend this set.

* The lack o{ the notion of object identity often forces the creation of arbitrary key values in
order to invent uniqueness. The inability of relational databases to handle data structures
which are recursive to some arbitrary depth stems from the lack of object identity. Identity
is also required for the structure sharing required for many knowledge-intensive
applications. Structure sharing supports referential transparency; that is, any change in
an object is automatically made available to ail of the objects that refer to it. This is not the
case with relational databases, where a change in a tuplie’'s key is not reflected in the
entities that share it (Zaniolo, et al). Rumbaugh (Rumbaugh, 1987) attributes many of

the problems of normalization (ie. concern about update anomalies, referential integrity

and redundant data) to the value-orientation of the model, and the refusal to admit the

property of identity.

_ MEENNNSSNNNNNN
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

* The relational model's reliance on the record construct and a tabular view of data makes it

unsuitable for representing unstructured objects.
Ullman (Ullman, 1988) argues that the value-orientation of the relational approach is, in fact, one
of its strengths. He bases this argument on the unsupported claim that it is impossible to detine a
declarative ianguage for an identity-based data model. However, this argument is ultimately
counter-intuitive; identity is one of the key concepts in modelling the real world. For example,
picture two brand new basketballs. They are the same in every way - colour, shape,
manufacturer, etc.. But as even a child can tell you, they are different basketballs. In other
words, they have the property of identity.

it should be noted that there have been a number of extensions to the relational model
which have been proposed by researchers which address many of the issues raised above. (For
example, the RM/T model, as described in (Date, 1983)).
Database Issues Addressed by the Object-Oriented Approach

From the previous section, it can be seen that the object-oriented approach promises a
better approach to modelling complex real-world entities than do conventional methodologies.
The following describe a number of other issues in database research and how they could be
addressed by object-oriented database management systems.
Conceptual Modelling

There has been a great deal of interest by database researchers in ways to improve the
methodology by which the conceptual schemas are designed. The goal is to capture more of the
semantics of the problem domain in the schema. Traditional data modeiling techniques capture

only the static (structural) semantics of the application. This limits their usefulness in specification

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

and design since only part of the pioblem can be adequately described, as the behaviour of the
system is not addressed. This research area is broadly referred to as conceptual modelling.

The modelling techniques which have come out of this area are known as semantic data
models. To a large degree, this area may be viewed as an attempt to combine advances in the
areas of databases, programming languages and artificial intelligence. It must be stressed that
conceptual modelling is not an implementation technique. Rather, it is a toolbox of concepts,
notations and abstraction techniques which improve the specification and design of database
schemas and transactions (ie. both structure and behaviour). Generaily, it is assumed that the
actual implementation cf the database will be done using a conventional relational DBMS.

One of the ideas advanced by conceptual modelling is that much of the semantics of an
application can be described using a number of abstraction hierarchies. The classification-
instantiation hierarchy is common to virtually alt database systems and languages. For example,
this abstraction exists in relational systems since a relation defines the contents and meanings of
the tuples actualiy stored in the database. This abstraction allows the grouping of like objects into
classes; and an instance-of relationship is said to exist between the objects and their class (ie.
{123, 'Fred’} could be an instance-of the relation Employees). The specialization-generalization
hierarchy supports the notion that the common properties of several different classes may be

represented by a generic class. The constituent classes are said to be specializations of the

generic class and inherit its properties. This abstraction establishes an is-a relationship between
the objects (ie. Managers and Secretaries could be specializations of Employees). The
aggregation-decomposition hierarchy forms a part-of relationship between between objects
which have been aggregated into scme higher level object (ie. Name and Address could form

part-of Employees). The association abstraction groups objects into collections. Objects are

SRR - |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

related by association if they may be viewed as being part of a higher level collection object. This

establishes a member-of relationship between the collection object and its members.

Conceptual modelling also brought the notion of encapsulation to database design. In
other words, the behaviour of the objects being manipulated by the database should also be
somehow captured by the schema; and further, that it is easier to maintain the integrity of those
objects if all access to them was via operations (transactions in database parlance) that they
defined and implemented.

Conceptual modelling, therefore, introduced the object-oriented design methodology
to the database community. Of course, once these design techniques became generally

accepted, the next step was to provide object-oriented DBMS's for their implementation.

Views
Views were described briefly above, however, since they provide a mechanism which
has been proposed as a method for the representatiu.. of complex objects by relational databases
(Wiederhold, 1986), they warrant further discussion.
Views provide an abstraction whereby information on the database is tailored to meet the
needs of a single class of users. There exists two types of views: partitions and aggregations.
Partitions: This class of views restrict and (perhaps) modify the database schema to meet
the needs of a certain class of users. Partitions may restrict which tables and/or which
fields a user may see in the database. There may also exist tacilities to allow the renaming
and reordering of fields within tables. Partition views are often used to control access to

the database.

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

Aggregations: This type of view is often describea as a 'stored join’. The goal of
aggregation views is to create a complex object from the relations in the database that
more closely follows the users’ conceptual view of the data. For example, in a CAD
database, a printed circuit board may be represented in a number of different normalized
refations; however, the user will want to view and manipulate the complex object as a
whole. Note that although the relations that make up a view of this type will be normalized,
there is no restriction that the view itself be so.

Aggregation views are generally considered a complex entity with poorly understood semantics in
the database literature. However, views are really just complex objects. As such, their
implementation would be a natural part of a OODBMS.

One of the reasons why views are considered complex is that the semantics of updates to
them in terms of their underlying implementation is not aiways clear. The maintenance of
database integrity in the face of view updates is also considered an i1ssue. Furtado and Casanova
(Furtado and Casanova, 1985) note that there are two basic approaches to handling the view
update problem. The first is to treat the view as an abstract data type, including a definition of the
allowable operations. Inother words, treat the view as a complex object. The second is to define
generalized procedures which take a view, the desired update and the current database state as

operands and attempt to construct a satisfactory update to the underlying database. They note

that treating views as ADT's has the following advantages:
« Centain updates are no longer ambiguous when they are not treated as straightforward
applications of single tuple insertion, deletion or replacement.
« Ambiguity is avoided since the developer can make arbitrary decisions in the

implementing the view operations.

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

« Specific view manipulation routines will be more user-friendly than the use of some
general-purpose view update language.

» Constraints are automatically enforced if view operations are restricted to those
implemented for the view abstract data type.

In terms of the object-oriented approach to views, the above holds, with the following
extensions.
» Since the components of a complex object (view) are themselves objects, the view is not
responsible for ensuring their integrity. As objects, they are also capable of intelligent
behaviour and are ultimately responsible for maintaining their own constraints. This
makes it more straightforward to implement view abstractions using an object-oriented
approach.
- Inheritance is an integral part of the object-oriented paradigm. Therefore, it would be
straightforward to define specializations of views. These would meet the need for
partition views described above, especially if multiple inhentance is ailows by the system
Objects, therefore, are the most suitable implementation vehicle for modelling complex entities.
constraints

More advanced database systems supply facilities for the mamntenance of constraints
defined over the database. Constraints put bounds on what behaviour is acceptable for a certain
class of entities or attributes of entities; they also put restrictions on the set of allowable states

that the database may be in.

Three types of constraints exists (Brodie, 1984):

R
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inherent: These are constraints which are the result of the data model which the application is

based on. For example, in under the relational model, there exists the constraint that relations

must be normalized.

Inherent constraints are not necessarily a good thing. Each of the traditional data models
(hierarchial, network and relational) , however, come with their own set of such constraints. While
they enforce a certain rigor in the design of databases, they also ultimately restrict what it is
capable of modelling.

Explicit: These are constraints which have been specified by the application designer or
implementer. The earlier example, where age is restricted to be between 0 and 150 is such a
constraint. How explicit constraints are most efficiently implemented is an active research area.
One presently popular approach is to express the constraints as predicates in some first-order
logic language.

Explicit constraints may be further divided into static and dynamic ccnstraints. Static
constraints include such things as data typing and range checking. Dynamic constraints, on the
other hand, are concerned with specifying what state transitions are aczeptable, given the
present state of the database. They are most commonly expressed i1 terms of pre and post-
conditions for database transactions.

Implicit: Implicit constraints are those which are the result of interaction between inherent and
explicit constraints.

One of the goais in building ob,ect-oriented database systems is to minimize the inherent
constraints, while at the same time allowing explicit constraints (both static and dynamic) to be

concisely and correctly expressed. Static constraints could be expressed as predicates over the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

object classes in the database. The real advantage to the object-oriented approach, however,
lies in the specification of dynamic constraints.

in {raditional database implementations, dynamic constraints are typically contained in
validation rules in the application programs that access the database. These programs have
unrestricted access to all of the entities available to them in the schema. Each of them s
responsible for ensuring that they do not perform some corrupt action on the database. Since
objects support encapsulation, the only way to access the entities in the database is via the
operations that they make available. Therefore, each object class is respons: le for the integrity
of its instances. The creation of complex interactions becomes a more straightforward exercise
when the programmer can rely on each of the database objects to maintain then swn integrity.

Closely related to constraints is the notion ot active databases. The concept implies that
the database schema should contain triggers or demons which automatically execute under
certain conditions. For example, an attribute of an entity can have a certain demon associated
with it which executes whenever an instance in updated. Active schemas provide a facility to
maintain constraints and to also perform certain 'housekeeping' tasks for the database.

Underlying the concept of active databases is one key assumption' the data in the
database is passive. The concept does not apply per se to object-oriented databases since this
assumption does not hoid. In an object oase, the only way to modity an object 1s to use one ot
the methods defined for its class. Integrity checks and/or housekeeping jobs may be included in
these programs. As aresult, OODBMS's are active by lefintion.
Meta-Data Management

Database management systems provide some mechanism for the management ot meta-

data. Meta-data refers o 'data about the data' being stored and mar & 1.4 2d in the system In

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

conventional systems, the data definition language (DDL) and the data manipulation language
(DML) are distinct. More recent tools treat thege in a consistent manner, with the advantage that
the meta-data may be accessed, and in sume cases manipulated, at run-time.

The traditional approach to meta-data management is to first design the schema and then
populate the database. The schema is viewed as largely fixed, and applications cannot typically
access or modify the information held there. Its purpose is to define the structure of new
instances and 1o keep track of existing ones. This approach is ineffective in areas such as CAD,
which have a high rate of change. Inthese environments, the DBMS must supply the users the
ability to add, modify and remove classes in the database schema. The more conventional view
of schema design and then database implementation is giving way to a cyclical approach to
database design, definition and use.

In addition, as (Zaniolo, et al) have pointed out, the main source of knowledge for a
DBMS lies in its meta~data. It should be available to be treated in a manner similar to reqular data.
As they put it

"In the meta-data lies the knowledge" (Zaniolo, et al; p. 59)

An object-oriented database management system should supply the users with
mechanisms to deal with data and meta-data in a consistent manner. The most straightforward way
to do this is to represent the schema itself as objects. Encapsulation will ensure that users cannot
access the underlying implementation of the DBMS system objects; furthermore, the operations

defined for the classes implementing the schema objects will ensure that any constraints will be

satisfied, thus maintaining the integrity of the system. But since it is composed of objects, users
will be able to manipulate the schema, just like any other class of objects. This is analogous to the

class description mechanism in Smalltalk.

BRSNS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Knowledge Bases

No discussion about the current research in object-oriented databases would be

complete without addressing the area of Knowledge Bases (KB). They represent another, not

entirely separate, stream of database research.,

KB's address many of the same issues dealt with by object bases by taking a knowledge-
based approach. Instead of viewing the semantics of an application as being described by the
combination of structure and behaviour of the objects involved, KB's model the real world using
facts and rules, along with some sort of deductive reasoning mechanism. The facts are stored as
tuples in a relational database and the rules are expressed in a declarative language, typically
based on some first-order predicate logic. The reasoning mechanism provides a way to deduce
truths about the world being modelled by the KB, without the necessity that they be expressly
stored as a tuple, as in conventional databases.

From a programming language perspective, knowledge bases versus object bases may
be viewed as Prolog versus Smalltalk. And in a manner similar to programmers arguing for their
most emotionally favourite language, you can find those who argue for either object or
knowledge bases as being superior!. Infact, they represent two different and complementary

methodoiogies for modeiling the real world.

3.3. Object-Orier Y Databases

What then, constitutes an object-oriented database management system (QODBMS)? It
should be apparent from the previous discussions on the object-oriented approach and on

databases, that many of the data abstraction issues in databases have been resolved by the

1 For an exampla of such an argument, see Ulman, 1988, pgs 28-29

-_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

object-onented approach. For example, class ana inheritance mechanisms support the

abstraction hierarchies of classification, speciaiization and aggregation; and the binding of
methods to classes supports the notion of encapsulation. The problem then, is to apply the
concepts inherent in the object-oriented methodology to the design and implementation of
databases.

This section first describes the two viewpoints taken by various researchers interested in
OODBMS's. It then turns to the key features which earn a database system the 'object-oriented’
label, including: support for object identity and complex objects, encapsulatior,, extensible type
systems and inheritance. We will define an object-oriented database system to be any DBMS
which supports, as a minimum, those inter-related features. However, keep in mind that object
bases first and foremost provide the functionality basic to any database, such as: concurrent
access to large amounts of persistent data, language support, backup and recovery mechanisms
and access control.

Two Pergpectives In Object-Oriented Databases

Object-oriented databases are a relatively new research area, and much of the interest in
it is com:ng from two, quite disparate, groups. The first group is the database community. From
their viewpoint, the object-oriented approach provides powerful new ways to abstract data and to
implement databases which support complex applications. Much of their emphasis is on efficient
access methods, indexing schemes and concurrency schemes. The second group is made up
of researchers in the programming languages area. From their viewpoint, OODBMS's provide a
mechanism to efficientiy share and access persistent data. Their interests lie in such areas as the
sharing of objects in different memory spaces, remote message sends and distributed garbage

collection. The percewved issues and proposed solutions advanced by these two groups are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

quite different (for an excellent discussion on the differences between these two camps, see
(Bloom and Zdonik, 1987)). The first constructs a data model to support the object-oriented
paradigm and then defines data definition and manipulation languages in order to implement a
complete OODBMS. The second typically takes a programming language (such as Smalitalk) and

devises ways to extend it to handle persistent data. These different viewpoints is not surprising,

given that the database community traditionally concentrated on the structure of systems, while
the programming language community concentrated on process.

There are a number of possible ways to connect object-oriented programming languages
(OOPL's) with object-oriented databases. These include (Peter Lyngbaek, in Power and Weiss,
1988):

+ embed database languages (such as embedded SQL) into an object-oriented language;
this approach works well for sharing and querying information, but is poor in terms of
flexibility and transparency;

« export certain database constructs, but use the OOPL to write the methods which access
the database; this is more flexible, but makes it more difficult to optimize queries;

- make persistence completely transparent, which is obviously good for transparency, but

makes it more difficult to share and query data.

Object Identity and Complex Objects

As discussed in the previous chapter, objects have the property of identity. Thatis, an

object can be distinguished from all others, regardless of its attributes Recall from Chapter Two
that this implies that objects retain their identity regardiess of any changes in their state (Uliman,

1988) considers this to be the definitive feature of an object-oriented database system, to the

———— R
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S0

point where he has given the DBTG network and the IMS hierarchiai models the object-oriented
label, simply because they support object identity.
Object identity is an important concept for a number of reasons, including the follewing:

« Object identity supports the definition and representation of complex objects which
have, as attributes, other objects of arbitrary complexity. In addition, composite objects,
such as collections, may be supported. The members of these composite objects may
be of arbitrary types, as opposed to most other data models where collections must be
homogeneous.

+ It allows the representation of objects for which little or nothing is known. This is an
important feature in applications such as CASE, where it is important to capture data that
is incomplete.

* Any or all of the attributes of an object may be changed without affecting the fact that it
remains the same object.

+ Related to complex objects, identity allows a high degree of structure sharing. Objects
which share a piece of knowledge do so directly. This feature reduces the update
anomalies as per the relational model.

« Finally, object identity is intuitive. Recall the basketball example discussed in the
previous section.

Encapsulation
For a DBMS to be considered object-oriented, it must provide support for the notion of
encapsulation. Recall that encapsulation is an implementation hiding technique. Instances of a

data are accessed and manipulated via a set of operations supplied by their class, rather than

have therr representation dealt with directly. As a result, the behaviour of an object is packaged

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

with its structure. This is done by binding operations to types (classes), which define the

behaviour of their instances.

Encapsulation provides a mechanism to model behaviour, since the operations allowed
by a class are defined to the database system as well. All of the programs which wish to
manipulate instances of a certain type must use the operations that they provide. Applications
become more concise, since the code to perform a certain operation occurs only once; they
become more reliable, since there is a higher degree of code sharing and reuse; they cope with
change better, since the impact of a modification can be localized to (typically) a few classes; and
the integrity of the data increases, since constraints on the objects can be reflected in their
operations. As a result, encapsulation aids in the development of 1arge, complex systems.
Extensible Type Systems

Extensible type systems refer to the ability to define new data types for use by the
database management system. A data type includes both a representation and a set of allowable
operations. In a conventional DBMS, developers are restricted to using a fixed set of pre-detined
types, such as characters, integers, etc. and a small set of operations on those data types. The
goal of an extensible type system, is to allow the creation of new types which are
indistinguishable from the system-supplied ones; and further, to be able to use these user-
defined types in the creation of even more new types. This allows the nesting of structure to
arbitrary levels.

Relational DBMS's &llow the specification of new relations in the schema. In an object-
oriented database, the class construct is used. Classes are similar to schemas in that they define
the representation of a database entity. However, they extend this with the ability to use other,

possibly user-defined, classes in therr definition and by packaging operations with structure

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

Classes provide the physical data independence of relational DBMS's without limiting the
expressiveness of the data model.
(Fishman, et al, 1987) lists the following capabilities as necessary to support an
extensible typing system.
= There must be a mechanism for declaring new data types. Specifically, filters are required
to provide some translation between the new type's internal representation and the
representation viewed and manipulated by the user.
= There must be a way to define operations on new types. This would typically presume the
existence of some sort of language support.
= There must exist a way to implement new database access methods for the newly created
types.
inheritance
In addition to providing a mechanism for adding user-defined classes to the system, an
object-oriented DBMS should support inheritance - either single or multiple. Recall that objects

were detfined as being abstract data types, plus inheritance.

MRS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

4. Implementing Object-Oriented Databases

4.1. Implementation Issues for Object-Oriented Databases

The following sections describe issues concerning the implementation of object-oriented
databases. Much of the information contained in this section was derived from (Stein and Maier,
1988), and from the transcribed discussions contained in (Power and Weiss, 1988).

Object-oriented database systems are still primarily a research field, with many unsolved
questions, as the following quote illustrates.

“...the field of object-oriented databases is taking off almost exponentially

as a strong market-driven activity. Over 25 efforts are currently underway to

implement OODB systems. There are many difficult research problems that need

to be soived: object-oriented data models, management of composite objects,

OODB programming languages, distributed transaction management on abstract

data types for co-operative design environments, change management for

evolving objects, object sharing in muiti-lingual and heterogeneous distributed

environments, query optimization techniques for abstract data types,

development of an appropriate performance matrix for JODB's, and performance

and reliability issues....OODB technology will take five 10 ten years to transition

(sic) from its current status of ‘proof of concepts' to the status of "full commercial
systems'.” (Satish M. Thatte, writing in Power and Weiss, 1988; p. 87)

Complex Objects - How Big is Big?

OODBMS's support large, complex objects whose inter-relationships are part of the data,
uniike relational databases, where such mappings are stored in the application code in the form ot
joins, projections, etc.. As a result, applications utilizing OODBMS's often have a navigational
feel to them. The user is provided with an environment where he can look at the contents of an
object and decide where to go next. At the limit, he may be able 1o access the entire database
from a single root. This poses an obvious question: what are the bounds of an object?

This problem has implications for concurrency control and for data integnty. For example

———————————————————

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

- How do you place bounds on the closure of an object? The user does not consider the
entire database as his domain of interest at any one point in time. How does the system
identify what he does consider to be the set of objects he is interested in,

» When you save an object, do you save every sub-object which is reachable fromit, or
some sub-set?

« What kind of locking strategy can be used when, in the bounds of a single session, the
user can navigate the entire database?

« Where should related objects be placed in the database? What sort of clustering
strategies best meet the needs of the application?

Concurrent Access
Concurrent access to object-oriented databases raises two issues which must be
addressed in their implementation:

- the nature of the applications which CODBMS's would typically be targeted to require
prolonged access and manipulation of data - unlike conventional database systems
where transaction durations are typically measured in fractions of seconds;

« complex objects may often take the form of directed graphs; concurrent access to such
data structures is a more difficult problem than that faced by other DBMS's.

Prolonged Transactions
(Fishman, et al, 1987) identifies the charactenstics of OODBMS applications which
require prolonged access to the database. These include:

+ Applications where one unit of work includes many conventional transactions against a

number of ditferent databases, possibly distributed across a network.

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

* Arificial intelligence applications where highly interactive queries may represent several
concurrent and inter-related transactions, mary of which are read-only.

* Design applications in CAD/CAM and CASE which require long transactions, with

durations often measured in days and where the intermediate results of a transaction may

be of interest 1o other users of the system. Further, since these transactions may

represent several days work, allowing the DBMS to automatically abort them due to

deadlock, or some other anomaly, is not viable. These applications also require the

simultaneous existence of a number of different versions of the same objects.
In order the satisfy the requirements of the design transaction scenario, Fishman, et al proposed
that the basis for concurrency control be provided by a version manager. Under this approach, all
transactions are allowed to commit. If a conflict is identified by the system, an alternative version
of the objects in conflict are created. Users check out one or more opject versions for extended
periods, and as a result, the locks required for them are maintained in persistent storage. This is
in contrast with most database systems, where the locks are maintained in the program memory of
the DBMS.

One approach to the implementation of a multi-user design environment is to provide
concurrency control, in the conventional sense, oniy for the length of time required to check out
a consistent view of the object the user wishes to manipulate. The transaction manager of a
traditional DBMS would be used while persistent locks are put on the objects being reserved for
the user. Those objects would remain locked until they are returned (checked in) by the user

However, instead of over-writing the old data at commit time, the DBMS will create a new version

Since a design transaction may last for days, there must also be mechanisms to allow the user 1o

save intermediate stages of his work. These partial saves may be made to the database ntself, or

R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

to some data store local to the user. If they are made to the database, they may be made available
to the other users of the system on a read-only basis.
- lex Obi Di | Grapt

While some research is available on how to perform locking on hierarchial data structures,
it seems that concurrent access to structures which are essentially directed graphs remain an
issue. Under the hierarchiar approach, a number of locking protocols are available {Ullman,
1988). One approach is to set a lock on the parent object, and whenever a lock is required on a
child object, the lock tree is traversed in the correct order. However, it must be noted that
whethet or not a lock on the parent object implies locks on all of its children is application
dependent. In some applications, the entire database may be reachable from a single root.

In situations wherc objects are directed graphs, a strictly hierarchial locking strategy will

not work, since there is more than one path to an object. As a result:

"You have to know alil of the objects within a closure of an object to determine
whether the clocures overlap. That is difficult for two reasons, one is that the
ciosures are often very large, and that means keeping track of a large amount of
information. When you try to determine whether two closures overlap <o that you
can allocate a lock, you have to look at an awful lot of objects, which may not
even be on the same server. It it is a distributed system, determining the closure
overlap is going to take you all over the place. It is not clear that the method will
work in practice." (David Wells, Texas Instruments, as quoted in Power and
Weiss, 1988; p. 84)

Concurrency control in object-oriented databdses will largely be the responsibility of the
application developers. The best approach seems to be to supply the developers with a number
ot locking and versioning primitives, which are then used to create application-specitic strategies.
These locks and versions are maintained in persistent storage. While there is still a need for
conventional concurrency control mechanisms, they are used primarily to ensure that the user is

getting a consistent view of an object while these persistent incks are being placed.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

The One-Level Store Abstraction

The concept of a ‘one-level store' comes primarily frem those programming language

researchers who are interested in the problems of providing persistent objects. Briefly, the idea
is that users and developers of systems which use a persistent object store should remain
unaware of whether an object is in memory or on disk at any point in time. The idea is to make the
storage of objects in a database transparent to the applicatiort programs which manipulate them.
This is in contrast with most current database systems which differentiate between persistent and
dynamic obiects in terms of how they are defined and what operations may be performed on
them.

Tne motivation for this approach is to avoid the situation common to many database
programming environments now, where the programmer must deal either with a number of
function calls to some database access routines or with an embedded data manipulation language
which does not mesh well with the host programming language (ie. impedance mismatch).

The maijor issue surrounding the concept of one-level stores is whether it is a useful
abstraction. Those from a programming language background view it as a natural way to
implement persistent objects for a language. From a database perspective, it poses a number of
problems. For example, if you have a database manipulation language which has been highly
optimized for querying and manipulating persistent data, how well will it handle dynamic data”
How usefui is a one-level store in a muiti-user environment, wnere the programmer will have to be
concerned with object locking and transaction management regardless?

Classes and Their Sets

One key issue regarding OODBMS implementation 1s the meaning of classes In

programming languages, classes define the common characteristics of thesr instances; as such,

e ———————————————————

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

they are strictly intensional. Onthe other hand, in most database systems, classes are
extensional, in that a collection of all of the instances of a class are maintained by the system.
Those who are basically interested in adding persistent objects to an existing OOPL,

such as Smalitalk, often find the idea of a relationship between a class and its instances a foreign

concept, as there is no comparable notior: in programming languages. Maintaining such a

relationship causes probiems for garbage collection. If an instance is referrad to by its class, it will

always have at least one reference to it, and as a result, will never be reclaimed. On the other
hand, people whose background is in databases find the notion of extensional classes intuitive.
Without class-based collections of objects, database queries based on classes would be
iImpossible.

The key question is really whether a collection of all instances of a class is meaningful, or
should applications maintain explicit collections for these instances they are interested in? Many
applications use instances of the same class, but store them in separate collections (Maier, et al,
1986). This is in contrast to the conventional database approach, which would store all instances
of the same class in a relation. The different collections manipulated by the application wouid
either be defined as a view or buried in the application code as a database query.

Object Deletion

Should objects be deleted explicitly by the application programs, as in traditional
databases, or should they be automatically reclaimed (garbage coitected) by the DBMS, similar
to the Smalitalk approach? One tfactor which may make garbage collection a better alternative is
the sheer complexity involved for the user of identifying those portions of shared, complex

objects which should be deleted fromthe system.

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Many researchers hope to avoid this problem all together, by not allowing the deletion of
objects whatsoever. While this may result in some wastage of storage, the cost of mass storage
devices is steadily decreasing.

Indexing

Should indexing be supported on the basis of internal state of an object, as is tha case in
conventional database systems, or should indices be based on the results of some method
execution, as encapsulation would seem to require? Recall that objects, by definition, have their
representation encapsulated within a set of operations specified by their class. An obiject's state
is hidden from view. If this approach is followed when indexing objects in the object-base, a
number of issues result. For example, if an index is based on a procedure cal!, how can the
system be sure that the procedure will always return .he same value for the same ot -ject state?
This implies that the system must know which structural changes for an object will change the
result of a method, so that the appropriate indices may be undated. If classes are to share indices
with their subclasses, what happens when a subclass over-rides the definition of a method which
forms the basis for an index?

Basing indices on the internal state of an object violates encapsulation; however, it can
be supported without the expense of procedure calls. One possible solution would be to view
indices on objects as being part of their definition, and therefore allowed to access their internal
structure. If indices are allowed on the structure of the object directly, the next question
becomes, how deep within a complex object can you specify an index? Only on the named

instance variab. - s specified in that class, or on instar<e vanables of instance variables?

R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

Class Modlfications

How to best handle changes to class definitions is an important research topic in
OODBMS's (Penney and Stein, 1987), (Zdonik, 1986), (Banerjee, et al, 1987), (Kim, et al,
1987). It may be viewed as being related to the concept of data independence, since it deals
largely with the same set of issues: how can the schema be changed with minimum impact on the
applications using the database and how should persistent objects be brought into line with their
modified class definition? The second issue is trivial in an environment where objects are rot
persistent, since the programs involved may be simply re-compiled.

The schema of an OODBMS is, in some ways, more complex than a conventional
database Thus is largely the result of inheritance and the binding of methods to classes. The
following is a table of possible class modifications allowed in the Orion OODBMS as shown in
(Kim, etal. 1987; p. 120). Under their notation, nodes and edges refer 10 classes and

specializations in a class lattice which supports multiple inheritance.

Changes to the contents of a node (a class)
Changes to an instance variable
Add a new instance variable to a class
Drop an existing variable from a class
Chan~z the name of an instance variable of a class
Change the domain of an instance variable of a class
Change the inheritance (parent) of an instance variable
(inherit another instance variabie with the same name)
Changes to a method
Add a new method to a class
Drop an existing method from a class
Change the name of a method of a class
Change the code of a method in a class
Change the inheritance (parent) of a method
(inherit another method with the same name)

———————————

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

Changes to an edge

Make class S a superclass of class C

Remove a class S from the superciass list of a class C

Change the order of superclasses of a class C
Changes to a node

Add a new class

Drop an existing class

Change the name of a class

Two basic approaches have emerged to handle class modifications The first {Zdonik,
13986), calls for the placement of filters between the old object representation and its current
form. The persistent objects are not modified until they are actually used by methods expecting
the new structure. The second approach is to convert all of the persistent objects to their new
representation at the time of the class modification. These two altematives correspond roughly to

"pay me now or pay me later’ (Penney and Stein, 1987, p 111)

4.2. A Data Model Which Supports Objects
One data model which has been proposed for the support of object-oriented database Is

the Decomposed Storage Model (DSM) (Copefand and Khoshatian, 1985) The modelis
decomposed, inthat, earch attribute of an object class i1s represented as a separate binary
relation. As a result, the values of each attnbute are stored in a separate file The model supports
a number of concepts which are important for the storage of persistent objects, including

- the concept of object identity, through the use of surrogate keys.

» directed graphs ot objects;

» heterogeneous records; and

» mufti-valued attributes.

The basic ideas behind the DSM can be descrnbed best by comparing the model to a

typical relational storage mode!, where all the attributes of an object are stored together and

e ————————
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

object identity is not supported. This approach will be taken in the following sections, which shall
describe the key teatures and characteristics of the Decomposed Storage Model. Note that the
examples used in this discussion were based on those in (Copeland and Khoshafian, 1985).

in order 1o get a feel for the model, however, first examine figures 4.1.a) and 4.1, b),
which show how a relation would be defined and stored under a re:ational database, and one

which supports the DSEM

Figure 4.1 a): A Normalized Relation

R at az a3

vit| v2l | v31
vi2 1t v22 | v32
vi3| v23 | v33

The a's represent attributes,
the v's represent values

Figure 4.1 b}: A Fully Decomposed Relation

r sur
s1
s2
s3

at| sur | yai a2] sur | val a3 | sur | val
s vii s1 vai s1 v31
s2 vi2 s2 va2 s2 v32
s3 vid s3 va3 s3 v33

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

Object identity and Directed Graphs

Obiject identity is supported through the use of surrogates, which are system-supplied
keys which are independent of (he attribute values of the objects they represent The DSM
requires that these surrogates are stored in a separate file. As a result, it is possible to represent
the existence of entities for which no information at all is known, without the need for storing
explicit nulls to represent unknown information,

Object identity, implemented through the use of surrogates, allows the representation of
directed graphs of database entities, which is crucial for the support of the complex objects This
is done by allowing surrogates of the child entities as attnbutes Under the DSM, this will result In
a binary relation made up of the parent surrogate and the child surrogate. An example of this is

shown in Figure 4.1 c). Note that object surrogates have been stored as the values of a relation

«—_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

Figure 4.1 c): Representing Graphs Using the DSM

r1}| sur ati sur val ait sur val
s s1 s$2 s1 s3
s3 s3 52 s3 s
r2| sur a21 | sur | val a22 { sur | val
s2 s2 51 s2 s3

The DSM relations shown above correspond to the directed, cyclical graph
shown below. S2 is highlighted since it is a different type than s1 or s3.

Hetercgeneous Records

Heterogeneous records, refers to the ability of different tuples within a relation to have

ditferent attnbutes. For example, a relation which describes a set of employees might contain
both engineers and salesmen. Both would include attributes a1 and a2 (say, name and birth

date), but salesmen would have attribute a3 (company car) and engineers would have a4

EESSERRRERE_——— e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

(project). Under the relational approach, this would result in a storage structure showrn in figure
4.2 a); note that an extra attnbute, denoting the type of employee being represented must be
added to the relation. Under a more sophisticated approach, where the relation has been partially
decomposed is shown in 4.2 b) (Note that this representation assumes that al - the employees

name - is a unique key).

Figure 4.2 a): Heterogeneous Relations

R type | al a2 a3 a4

t1 vit] v21{ v31 | n/a
12 vi2 | v22 | n/a { v42
te vi3]| v23 | n/a v43

Figure 4.2 b): A Normalized Representation of a Heterogeneous Relation

R1 ai a2 t1 ai a3
ati a2t al1 | a31
alz | a22
at3 | a23 t2 al a4

al2 | a42
al3 | a43

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

The DSM approach is shown in figure 4.2 ¢). While the partially decomposed relational

structure 1s acceptable in terms of storage efficiency, it would invoive spreading the

representation of an employee over several relations. Furthermore, this decomposition is not

performed automatically, as it would be using the DSM. Instead, its specification would have to

be included in the design of the conceptual schema.

Figure 4.2 c): A DSM Representation of a

Heterogeneo us Relation

r sur al sur val
s s1 vii
s2 s2 vi2
s3 s3 vi3

a2 sur | val a3 sur | val
si va21 S v31
s2 v22
s3 v33
a4 sur val
$2 v42
s3 v43

Muiti-Valued Attributes

Multi-values attnbutes (also referred to as nen-first normal forms), refers to the ability of a
single attribute of a relation to have more than one vaiue. For example, in an employees relation,

you may wish to record the employees’ children. Obviously, this attribute could involve several

vaiues for each tuple

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Support of multi-valued attributes in a relational data model results in either reduced data
independence or in greater complexity. If the storage modei directly supports multi-valued
attributes, a more complicated storage structure is required. The other alternative would be to
further normalize the relations. Each attribute which could contain multiple values 1s decomposed
into ancther relation. As a result, however, data independence is reduced, since a char.je from
a single to multi-valued attnbute {or vice versa) will result in a change in both the conceptua!

schema and the underlying file structures.

Figure 4.3 a): Multi-Valued Attributes

R at az a3
vit | va1 v31
vi2 | v22 v32
vi3 | va3, ve4 v33

Figure 4 3 a) shows an example of a relation which contains multiple values for attribute
a2. Under the DSM, this would result in a2 being represented, quite naturally, as an additional
tuple in the relation for that attribute. This is illustrated in Figure 4.3 b). Thus the DSM approach
has the following advantages:

« no additional complexity is introduced by the presence of multi-valued attributes, and
+ data independence is not affected, since switches from multi to single-valued result in no

changes to the storage structures.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 68

Figure 4.3 b): A DSM Representation for Multl-Valued Attributes

a2 sur vail
s1 v2i
s2 v2?2
s3 v23
s3 v24

4.3. GemStone: An Object-Oriented Database

GemStone, and its programming language OPAL, is one of the few commercially
available object-oriented databases. It is also one of the best documented in the literature (Maier,
et al, 1986), (Penney and Stein, 1987), (Purdy, Schuchardt and Maier, 1987) and (Maier and
Stein, 1986). Other examples of object-oriented databases' include: POSTGRES (Stonebraker
and Rowe, 1986), (Stonebraker, Anton and Hanson, 1987); ENCORE (Hornick and Zdonik,
1987), (Skarra and Zdonik, 1986), (Smith and Zdonik, 1987); ORION (Kim, et al, 1987),
(Banjeree, etal, 1887); Iris (Fishman, et al, 1987); Emeraude/PCTE (Emeraude, 1987);
VBASE (Andrews and Harris, 1987); and VOOD (Barbedette and Richard, 1986).

The basic approach taken in the design and implementation of GemStone was to extend

the Smalitalk language with a number of database amenities. These include: support for queries

over collections, persistent storage structures, class definition faciiities and a multi-user
environment for data shanng. Unlike most other efforts which extend programming languages

with persistence, however, the GemStone group comes primarily from the database community.

' It should be noted, however, that aithough these systems share the label ‘object-oriented database
systems’, they are often radically different in terms of their design and implementation.

e]
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As aresult, itis a database first, with a Smalltalk-like language and programming environment

available for applications development. The choice of Smalltalk as its basis was, in fact, largely

market-driven since it is the best known of the object-oriented languages.

The basic GemStone architecture can be seen in Figure 4.4. The key things to note are:
» Stone provides the basics of a centralized, persistent object server This includes such
things as storage management, concurrency control, transactions, recovery, support for
collections and active session workspaces. Object identity is supported in Stone through
the use of surrogates - referred to as ‘object-oriented pointers' (OOPs) - similar 10 the
Decomposed Storage Model described above. However, an object’'s instance variables
are stored together, unlike a decomposed representation. Stone maintains an object
table, in the form of a B-tree indexed on OOPs, which maps OOPs to physical locations

Stone provides four basic storage structures- self-identifying (ie. Smaillnteger,
Character), byte (ie. String, Float), pointer (ie. Employee, SMEArc), and non-
sequencable collection (NSC) (ie. Set). NSC's may be queried. Stone provides only the
most basic operators for object access ad manipulation.
Gem cormresponds roughly to the vitual m=ochine layer in a Smalltatk implementation It
adds the data abstractions required to add the ‘object-onentedness’ to the GemStone
model. It also provides such facilities as the OPAL byte-code interpreter and access and
session control. Gem also inciudes the system-supplied hierarchy of classes.

Gem provides a facility to constrain named instance vanables to be of a centein
class. For example, an Emplovee's name vanable could be constrained to be a Strinig
Agents are a set of routines to facilitate communication between GemStone and

applications written in other languages. such as C and Pascal Programs written in those

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X 70

languages may make calls to an Agent process for session and concurrency control,
passing messages to GemStone objects, executing OPAL statements and compiling
OPAL methods.
Information is passed between the Agent and Gem in the form of bytes and
object pointers.
» OPAL, as mentioned earlier, is basically the Smalitaik language extended to support
persistence. OPAL supports class definitions (data definition), data access and update
{data manipulation), and control of the GemStone server. However, the user interface
classes which are so much a part of the Smalitalk environment, have been removed from
the OPAL irnage. Applications are instead expected to manage the human interaction via
modules written in C or Pascal, with database access provided by an Agent process. The
OPAL Programming Environment (OPE) provides a window-based interface for the
creation and modification of GemStone classes.
Gem, Stone and Agent are separate processes. While there may be multiple Gem and Agent
processes running (typically one each per user session), there is only uiie Stone process

runnming per GemStone system.

R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s 71

Figure 4.4: The GemsStone Architecture

IBM-PC

Windows

Other

OFE Application

Agent Agent

Network Software

VAX LAN

Network Software

Gam Gam
Process " s = Process

N

Stone
Process

VMS File

/0

Data

SRR
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. 72

Session and Access Control

All objects In a GemStone database belong to a particular segment. Segments are owned
by users, and each user owns at least one segment. Access permissions to a segment may be
granted Ly its owner to other users of the sy_iem, who are identified by userid and password
control by GemStone. Note that having a pointer to an object is not the same as having
permission to access it; furthermore, having permission to access an object does not imply
access to all of its sub-objects.

Each GemStone user has a list of name spaces specified in his UserProfile. Thece are
dictionaries which are used to provide irdividual users the \llusion of a global name space.
Whenever a name 1s encountered by the OPAL compiler which is neither an instance or a class
vanable, the user's name spaces are searched to find the object being referenced. Name spaces
may be included in the UserProtile of a number of users, and are therefore a mechanism for
sharng information.

Concurrency Control

Concurrent access to the database 1s provided by Stone, which maintains a workspace
for each active session. This workspace contains a shadow cony of the object table, which was
based on the most recently committed sbject table, referred to as the she 'd table. Whenever an
objert 1Is modtied by a user, a new copy of it is placed on a disk page which is inaccessible to
other sessions The user's shadow copy of the object table is then modified 10 point t» the new
object location The shared table is not actually copied at the beginning of a session, instead,
the top node of the B-tree which represents the table is copied, and nodes are added 1¢ the tree

as objects are accessed dunng the session.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X —— 73

Unlike the locking two-phase locking protocol discussed in tha previous ch .ter, the
concurrency control schieme implemented by Stone is optimistic. Conflicts are checked at commit
time, rather than prevented through locking. Stone keeps track of the objects which a transaction
has read and written, and conflicts with other transactions which have committed since it began
are identified. If any conflicts are \dentified, the changes 1 the shadow table are discarded, atier
the disk pages used to write new objects are reclaimed by the storage manager. This approach
has the advantage that read-only transactions can never conflict, since they never write to the
database at commit time. However, care must be taken to ensure that write transactions are not
too big, since long periods between commits may result in lost work.

Collections and Indexing

Indexing in GemStone is provided for collections, rather than classes Those applications
which require associative access to the instances of a class must implement that class to maintain
its own instan: 2 cbllection No such collection is provided automatically by the system

Indices therefore exist on explicitly maintained collections. They are created and
removed by sending a message to an instance of Bag or Set, which specifies the path that the
index is for. For example, if empSct if a set of Employce objects, an index may be added to the
set by sending a message specifying that it is to be built on empName last (ie. the last name of
the employee instances in the set).

Indices may be based on either the value of a path, orits identity. Note that since a value-

based index (known as an equality index) is based on the internal state of an object, 1t violates the

encapsulaiion of those objects for which it is defined. For an equality index to be defined, the

types of the instance variables mentioned in the path must be constrained to be of a particutar

type.

————
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Query .g

Assuciative accese 1s performed in GemStone by querying collections which are
maintained explicitly by the applicatiun. The query language itself is ir: the form of a mess: ¢
protocol implemented by class Collection 37d its subclasses, such as Set and Bag. For example:

aBag select: aBlock
The block may be thought of as a Boolean selection expression which is evaluated against each
element of the collection. If the expressi. 1 evaluates to true, the element is included in the
collection returned by the query Whether or not an index 15 th be used can be controlled by the

programmer, by using braces ir.stead of brackets to enclose the block expression. For example:

aBag select
{ -anEmp | anCmp.empName.lastName = 'Sanders’}

would cause a index to be used, if one existed. while

aBag select:
[:anEmp | anEmp empName.lastName = ‘Sanders’]

would not
Garbage Collection

Garbage collection 1s ¢one at two pomts in GemSteone. The first is dunng user sessions,
where objects which have been created and then later Je-referenced are treated as garbage and
their memory reclaimed. Once an object has been committed to the database, however, it may
also later become garbage. Inorder 10 handle these, GemStone collects persistent garbage off-
line, using a mark-sweep algonthm Note that this requires that the database ba made unavailable

duning the time when the garbage collection process 1s heing run.

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

5. Design Issues
Before tuming to the design issues addressed in this work, a number of underilying
definitions must be made clear to the reader These definitions are intended to describe the

differences between an object-oriented database management system, an object server, and an

object-oriented database programming language

Objeci-Oriented Database Management Systems: These systems support
persistent objects using a complete environment. They typically have their own
programming language (which may be embedded in a different host language), memory
management, and data model. If the persistent objects are used by a host programminy,
language, the applications developer must deal explicitly with the location of objects
The ~bjects must be explicitly read into memory by the program before being acted upon,
or commarnds issued to the DBMS to perform actions upon the persistent objects in the
database. An example of an OODBMS is GemStone, as described in the previous
chapter.

Object Servers: These systems provide persistent object support for an existing
programming language. The abstraction of a ‘'one-level store' may be supported in other
words, the applications programmer no longer must be concerned with the location of the
objects he is dealing with However, there remains a dehneation between the
programming .anguage, and the persistent object server For example the object server
requires a separate address space from the executing applcation This work represents

the design and implementation of an object server for the Objective-C protramming

language.

R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

Database Progran Ing Languages: These systems seek to provide programming
languages wh. « persistence is designed right into the language itself. There is no
separation t .tween the persistent object manager and the language. Such languages
are describe: 1 in (Cockshot, et al, 1983) and (Atkinson and Buneman, 1987). A number
of thoughts on creating such a language are described in the concluding chapter, under

Future Research.

5.1. Design Goals and Constraints

The following sections describe the short and long-term design goals for the object
server The immediate goals are those which must be met by the initial implementation, while the
long-term goals are those which must be allowed for in the design, so that future enhancements
may be made with minimum effort.
ImmedIate Goais

The first goal of any object server must be the reliable, persistent storage of objects. That
1s the pnmary raison d'etre for any form of database system. The following describes the
objectives which this work must satisfy in its implementation.

« Qbject-Onented Data Model, Since the object server is intended to support an object-
oriented programming language, its data model must provide the features inherent in the
object-oriented methodology. These features include support for . object identity,
inhertance, complex objects, encapsulation, and an extensible typing system. Recall

that support for extensible types requires supfort for: the declaration of new types, the

detfinition of operations for those types, and the ability to detine new database access

routines for those types.

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—‘

77

Persistent objects are to have their allowable operations defined in the Objective-C
language. Furthermore, class definitions used by the object server must also be shared

with the Objective-C compiler. Theretore, some facility for maintaining the required

relationships between the object server schema and the Objective-C application code

must be provided.

- Schema Modifications: Access to the system's meta-data must be provided, and the
user must be abie to manipulate it in order to define and modify the class definitions which
make up the database schema. Class modifications must be reflected in some reasonable
manner in the data manipulated by the Objective-C methods.

* Object Granularity: The objects being manipulated by the toolset fall into two broad
categories: complex, highly strictured objects which are made up of numerous objects
of relatively small granularity; and large, unstructured objects (such as text). The object
server must provide access to objects of both types, with reasonable access and update
performance.

The granularity of persistence must also be addressed in the implementation. For
example, are entire complex object graphs, individual objects or individual variables
within objects to be the unit which may be specified as persistent.

« Consistency with Objective-G: The goal of this work 1s 10 provide a persistent objeci server
for the Objective-C language. Impedance mismatch must be kept to a minimum. The
typing system must be as close as possible to that used by the language For example,
introducing a stronger notion of typing in the ebject server's data model would not be
heneficial. Similary, splitting the storage of instances into their various types, as

specified by their inheritance hierarchy, would not be usetu!l, since Objective-C stores

————EE
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the entire object as one unit.! The server must also support the basic data types

manipulated by the language. These include the C primitive data types, and the
foundation object classes provided with Objective-C.

Along the same lines, the object server implementation should require as few
modifications to the Objective-C language and run-time support facilities as possible. For
example, modifying the compiler to recognize persistent objects as some special case is
not an option.

- Integration with Objective-C: The object server, as a development tool, must be as
simple to use as posstble. First and foremost, this implies that the object server should
be well integrated with the Objective-C language. Accessing persistent objects should
not require the use of scme special protocol; persistence must be provided to objects
without requinng that they be a subclass of some special class; the location of persistent
objects (ie. in memory or on disk) should be transparent to the program<; and the use of
persistent objects should be syntactically identical to normal object usage.

Although the object server should be as straightforward to use as possible, #
does not necessarily have to be invisible. Some reascnably small amount of interaction

between the client programs and the object server is allowable.

| Y

! For example, say you had two classes - Person and Employee Employee inharits from Person.
instances of Employee have all of their instarice variables contained within the same abject. An alternative
approach would be to have the Person portion of an Employes stored in one memory ' cation, and the
Employee portion of an Employee stored in anothar. In a database sense, this woulo im.ly two entities
(racords) would be required to store one instance of Employea.

2 This s generally referred 10 as the ‘'one-level store’ abstraction, whereby the movement of data betwean
disk and memory is hidder from the programs accessing the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

———

79

Long-Term Goals

While not part of the initial implementation, multi-user access to the object base is ot great
interest - for both practical and academic reasons. Concurrent access 1o persistent objects
would be an important step towards a complete CASE environment, with support for all of the
team-oriented aspects of the software development process. It is also a difficult, and therefore
interesting, problem. Multi-user access to databases which support CASE environments
remains, to a large degree, aresearch issue. This is largely due to the fact that such
environments require two complex features: support for prolonged access to data, while
maintaining a consistent database, and for the maintenance of multiple versions of the design
objects.

Proposed extensions to the object server implementation for multi-user access are

contained in the Further Research section at the conclusion of this work.

5.2. The Basic Architecture

This section is intended to give the reader an introduction to the object server design.
Subsequent sections will describe its companents in greater detai.

The basic structure of the object server, and how it relates to the tcolset, can be seenin
Figure 5.1. Some key things to note are:

» Objective-C applications utilize the object server by linking the class ObjectManager with
the application. The ObjectManager has no instance methods - its functionalty i1s
implemented as a class protocol. When the application begins, the ObjectManager 1s
initialized by sending it the open message, which returns the database root object. The

ObjectManager session may be terminated by sending it the close message

-—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

+ Persistent objects are read from, added to, and updated in the object base by making
calls to the ZIM Programming Language Interface (PLI) routines described in the follow'ng
chapter.

« Ail data manipulation of the persistent objects is performed within the address space of
the Objective-C application. Updates cannot be forwarded te the object server to be
performed in some asynchronous manner; all calls to the ZIM PLI routines are blocking.
Objects which are required by the application are read, manipulated by Objective-C
methods, and then returned to the database.

» The applications which use the object server do not access the persistent objects directly.
Instead, database objects are represented in the application by instances of class Proxy.
Messages which are sent to proxies have their receiver object transparently changed from
the proxy to the underlying database object which it represents. This swap is performed
by a modification to the Objective-C message sending kernel. No changes were required
to the Objective-C compiler.

« When a message is sent to a Proxy instance, if the persistent object it represents has not
already been read, it is loaded from the object base and cached by the ObjectManager.
This provides the illusion of a ‘one-level store’.

* The ObjectManager utilizes metadata (the "Object Schema”) to describe the

representation of objects - in both their object base and Objective-C formats.

« Objects are saved to the object base by explicitly telling the ObjectManager to commit.
New objects, and changes to existing objects of a persistent class are saved to the
database only # they are committed. This results in an implicit read/explicit write data

access modei.

—_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

« Persistent objects are stored in a ZIM relational database, using the ZIM Programming
Language Interface. An object-oriented data model has been implemented using the

PLI. Allinstances of a persistent class are stored in the same ZIM database fiie.

- —EE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Figure §.1: The Object Server Architecture

ARTTisan Toolset

Obj C Run-Time System

ObjectManager

«
o E
Object Cache %2 SUN Workstation
oA
ZIM PLI
UNiX

Network File System

Ethernet LAN

é)

LAN
File
| Servar

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

5.3. The Data Model

The data model implemented by the object server supports the concepts basic to the

object-oriented methodology. These include: support for object identity, complex objects and”
muiti-valued attributes. Unlike the Decomposed Data Model presented in Chapter Four, the
selected data model stores all of the attributes ot an object on the same record All instances of
the same class are stored in the same ZIM database file. Note that the data representation of each
object includes all of the instance variabies defined for instances of its class - including all of the
variables defined in superciasses. Figure 5.2 illustrates this point. It shows the definition of two
classes (in Objective-C syntax), and how an instance of each class would be stored as records in
their corresponding database file. Notice that instances of class Employee contain the variables
defined in the superclass Person in the same structure.

Since the goal of this research eflort was to provide a persistent object store tor the
Objective-C language, every attempt was made 10 keep the database representation of
persistent objects close to the internal Objective-C tormat. Infact, the data mode! used by the
object server is essentially a ZIM-based, persistent implementation oi the Objective-C data model

The following sections describe the key features of the data model, and provide some
insight into their ZIM PLI implementation.

Object ldentity

Identity is one of the key properties of objects. It is supported in the data model by
assigning every object a unique surrogate, called the Object Identifier (OID) The QID of each
object has two parts: the first is the integer Unique Identitier (UID) of the object, the second is the

class number of the object, which is actuaily the ZIM database file number which contains all

instances of that class. The OID is actually represented as a C double precision number: the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

integer portion is used as the UID, and the decimal portion is used as the class number. This
imphes that every object in the database has a ne-byte header: eight bytes to represent the
double, and one byte to hold the 'null’ byte used by ZIM itself.

Since OID's contain both a unique identifier and the ZIM file number where the object
resides, they can be used {0 locate objects in the database without the need for an object table
The OID contains all of the information needed to find the physical location of the object. Figure
5 2 shows how this would be performed. Suppose you had read the object representing Fred
le'Jamitor, and you then wished to access the object representing his spouse. Her OID is stored
as an instance varnable of Fred. Using the ZIM PLI, you can find her object by searching the
database file #101, as indicated by the c!ass identifier contained in her OID.

Figure 5.2: Persistent Object Representation

Person : Object { // ZIM file 101
char name[30];

Employee : Person { // ZIM file 102
int empNum;
id spouse;

[]

}
Employee Database file #102

oD name empNum SpOUSe
1111.0102| Fred le'Janitor 999 2222.0101
L)
Person Database file #101 .
oD name

£22.0101) Moily le'Janitor

- e W W™ B WO eOEmeeem W R OwWm e W w W™ e oW eww W W w W

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

A persistent object (called, say O4) is therefore stored in the database with a unique 8-

byte key - its OID - which allows its retrieval. Other persistent objects (for example, O,) that
reterence O4 do so by storing its OID as the value of an instance vanable of type id. Note that
when O, is read into memory, the 8-byte OID referencing Oy must be converted into some 4-
byte value, which is the size of anid!. Intact, the OID is used to create an instance of class Proxy,
which will be discussed in detail in Chapter Seven.

Object Typing

Persistent objects follow the same typing conventions as ordinary Objective-C objects
That is, their types are resolved at run-time, rather than at compile-time All objects are of the type
id as far as the compiler is concerned. At run-time, the objects' isa potnters are used to identify
which class the object is an instance of. No attempt is made to constrain the type of a certain
instance variable to be of a certain object class. This appiies only 1o instance variables which are
of type id. For all other variable types, the regular C language typing rules apply.

Early in the 1esign of the object server, introducing a stronger typing mechanism was
considered. However, it seemed 1o buy relatively view benefits and presented the possibiity of
introducing imp~-‘ance mismatch between persistent objects and Objective-C.

Data Types

The object store provides a mechanism to maintain persistent objects. It does not

support C structures or unions as units of persistence The types of the instance vanables within

objects is limited to the following primitive types:

short, long, int, unsigned, double, float;
char (as a character array, nota C stning), boolean,
id (objects).

! Recall thatan id is nothing other than a C pointer, which on the SUNs is four bytaes.

t " ! [[T

1 | |
[N I
A , \ ' " |
1 (] I —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

To get the tunctionality ot a C null-terminated string, use instances of the class String.
Since ZIM supports only a subset of these data types, the object server must convert the
types when reading and writing objects from the database. The types, and their ZIM storage type

are:

C Type Slored as
shon short

long long

int long

unsigned long

double double

float float

¢har char

id doubte (an OID)

The object server presently supports the following Objective-C classes:

Object

Chitn

OrdClin
Stack

Set

IdArray

Stnng

Point

Rectangle

Thus the object server supports most of the "Foundation classes” which come with the

Objective-C compiler!. As wiil be described later, many of these classes must be treated as

spectal cases by the ObjectManager. This is due to the non-object-otiented techniques used to
implement these classes. Specifically, the principle of encapsulating cobjects was abandoned in

tavour ot speed in their mplementation.

' The foilowing Objective-C Foundation classes are not presently supported: Bag, BalNode, SonClin,
Assoc, Dictionary, BytArray, IntArray, and Sequence. Their absence is piimarily the result of the fact
tha at present, they are not utilized by the ‘oolset cods.

1 i n [T [| I
|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

Complex Objects

Complex objarts are essentially directed graphs of inter-related objects. The

connections between related objects in the database may be represented using the Object

Identitiers (OIDs) of the various objects. A persistent object (called, say) which refers to
second persistent object (O,) does so by stonng O,'s OID as the value of an instance vanable of

type id. In some ways then, the data model is similar to a network mode!, where the links between

objects are maintained as unique database identifiers.

Consider the previous example concernir . Fred le'Janitor. An extended example, using
a more purely object-oriented representation, could use instances of the class Name, in which a
Person's first znd last names are String objects (see Figure 5.3). in this example, we have
introduced two new classes - Name and String. Name is 7 complex object which has two instance
variables, namely firstName and lastName, which are both instances of class String. Note also
that the Person class has been extended, such that the instance variable narc is nc'v an object
(an instance of class Name}, and that the instance variable spouse has been added to it In the
example using Fred le'Janitor and his wife Molly, the database must now store eight distinct
objects which form a directed graph, with a cycle’

The concept of complex objects may also be usec to explain how the object server is tn
be utilized by the toalset. Essentially, the contents of the entire chject base may be viewed as
one large, complex cbject. Every object in the database i1s reachable from a single databz « root

object When a session with the ObjectManager is started, the r~ot object 1s supplied to tne

! Molly 1s referred to by Fred as a spouse, and vice versa.

.
‘
‘
‘
! [N I
1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1O h gz
——— 132 |"| 22
= e f[E=

it £
- 22

12 [l e

Pl ==yl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

application. As the toolset session navigates the network persistent objects, they are read in

from the object base. This process will be described in detail in the following chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

rigure 5.3: Representing Complex Objects

= Name : Object { // ZIM file 100, Strings are in file 109
id firstName,
fastName;
}
= Person : Object { // ZIM file 101
id name,
spouse;
}
= Employee : Person { // ZIM file 102
int empNum;
}
Object representing Fred le'Janitor (Employee).
1111.0102 [1199.0100 [2222.0101 [399] .
........................ 4aeanny N :
: P T t 1 : v
: : Name . . ! :
- 1199.0100 {1177.0109 | 1166.01089 |* I
- 1288.0106 | 1187.0109 | 1196.0109 ||
: : ’ “““““ : “““““ :‘ -t : :
Ve . ! ' ' N
Pyt TETEEETESTTEEET RS, 3 . R \
t) rr s s s s E A s R AT T AR w s e Te e A ' ' . '
vt . . \ '
vt Strlng . ' !
] I' N] L] '
v 2T 1177.0109 Fred NN N
« -~ -#{ 1166.0109 | ie'Janitor Col :
-~ 1187.0109 | Moliy ;
=-®1196.0109 | feJanitor | .7
*" Person : f
’-2£222.0101 1288.0100 {1111.0102
Object representing Molly le'Janitor

|
Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner.

90

Multi-Valued Attributes

Objects which have attributes which are multi-valued may Le represented by using
instances of the various collection classes provided by Objective-C as their attribute value. For
example (Figure 5.4 a & b), say that Employee obiects were to now maintain a set of all of their
children. This may be done by simply assigning the instance variable children a set object (or
some other collection-type object) as its value. In Objective-C, instances of class Cltn (Ccllection)
and its subclasses - suc™ as Set - maintain their contents as an idArray, as is shown in the figure.

Instances of these collection classes are often retferred to as aggregate objects.

Persistence Granularity
Most persistent object systems use the object as the unit of persistence. Thatis, an

object is the smallest unit that may be placed in the persistent object store. Typically, which

nbjects are to be saved is specified by describing a class of objects to the system. Instances of
that class may then be saved to the object base.

The data model used here allows instance variables as the unit of persistence. This allows
for the specification of object classes which save only portions of their instances in the database
The portions not saved are assumed to be resolved at run-time by the application. When an
object is read from the object base, any non-persistent variables are initialized to nulls; when an
object is written to the database, any non-persistent variables are removed before the object i1s
stored.

This approach is motivated by the fact that many of the classes which make up the toolset

contain instance variables which have non-persistent instance vanables. For example, many

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

objects contain references 10 SunView structures. These structures represent some run-time,
graphical representation of the object. As such, it makes no sense to save these structures to

the object base.

Figure 5.4 a): Deflnln& Multi-Valued Attributes

Name : Object { // ZIM file 100, Strings are in file 109
id firstName,
lastName;

H

St

Person : Object { // ZIM file 101
id name;

Employee : Person { // ZIM file 102
int empNum;
id dependents; // Set is in 110, IdArray is in 111

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.4 b):

Representing Multi-Valued Attributes

92

Object representing Fred le'Janitor (Employee)

1111.0102 |1199.0100 [999(3333.0110
..... N _)
* Set :
3333.0110 |4343.0111 :
o X
................. 1 '
L]
IdArray X Person
<:4343.0111 2255.0101 |--+-- —{2255.0101 |[2787.0100
4343.0111 {2266.0101 f--*-~ 2266.0101 [2797.0100
.............. e e
!]
b omemamanaeanna Nmmmmmeaeacacae e emmeeanam—at
. Name ¢
\
N 1199.0100})|1177.0109 | 1166.0109
.!
' “=-~-$12787.0100]|| 1187.0109 | 1196.0109
bemsm ®12797.0100}| 1187.0109 | 1196.0109
L)
:.“ - -
. String | 1177.0109 | Fred
N 1166.0109 | le'Janitor
N
\\““_’ 1187.0109 Freddy Jr.
11986.0109 le'Janitor
1187.0109 | Sally
1196.0109 le'Janitor

—_— |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

6. The Language to Object Server Interface

6.1. The Building Blocks: ZIM and Objective-C

The object server was implemented using two tools: the Objective-C programming
language, and the ZIM entity-relational DBMS. The following sections describe these two
products in some detail. Many of the features and constraints mentioned below impacted the
eventual outcome of this work.

Tre ZIM Programming Language Interface
<IM Basics

ZIM is a database management system developed by Zanthe Information Inc., of Nepean
Ontano. The tull DBMS supports most of the features of the entity-relational data model,
although database entities do not have the propenty of identity. Entities in the database are
stored in entity sets which are implemented as database files. Any indices on an entily set are
stored in the same file.

ZIM provides an integrated environment to build typical database applications. It includes
multi-user data access routines, a transaction manager, access control and security, a screen
formatting facility, a report writer, and a 4GL programming and query language, with compiiar. All
of the various facilities are included in the same package, unlike most such products, where many
of these facilities are separate. The programming language supports all of the common control
structures, procedure and macro abstractions, and recursion.

Why Use ZIM?
ZIM has three features which made it attractiva for this research. The first is that the meta-

data is available to the programmer as regular data. For example, the defintion of an entity type is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

contained in the two entity sets EntitySets and Fields, and the data in these may be manipuiated

as would any other data. Thagse two entity sets maintain the following information:

Entity N Feid N I h Descrict

EntitySets
Fields
Fields
Fields
Fields
Fields
Fields
Fields

entName
SN
fieldName
ownerName
type

lenath
decimals
index

char
num
char
char
char
num
num
char

18
4
18
18
8
5
2
6

name of entity set

sequence number of fieid in set
name of field

name of set which contains this field
data type of field

length of field, in bytes

number of decimals

indicates if an index is to be
maintained on this field

The data manipulation language and the data definition language are one and the same

It shouid be noted that manipulating the meta-data does not result directly in changes to the

database structure. Once the database schema has been modified, the definitions involved must

be convented to their internal ZIM format, and the database fiies involved reformatted or created.

Unlike most DBMS's, however, these changes to the schema may be made on-the-fly by ZIM

programs - with the restriction that the database must be accessed in singie-user mode. This

process is analogous to compiling: tirst the schema is defined, and then it is converted into a

format directly usable by the system.

The second feature is that Zanthe offers, as a product, the ZIM Programming Language
Interface (PLI). This utility offers access to the database files from within C (and by extension,
Objective-C) programs. It should be noted that the PLI is not an emkedded query language,
such as ESQL or QUEL. It provides a series of C functions which may be cailed to perform a
number of database utilities. These include: opening and closing of database files; adding,
deleting and updating individual database entities (records); adding and deleting index entries,

password control for access to the database; and starting, committing and aborting database

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transactions An Objective-C message protocol for the ZIM PLI is discussed in the following

chapter

The third feature provided by ZIM is its portability. The product, including the PLI, is
available for a wide range of hardware platforms, including: 1BM PCs, IBM mainframes running
VM/CMS, DEC VAXs running VMS, and SUN and Apollo workstations. The ability to re-
implement the object server on different platforms, if required, is a powerful feature.

The combination of these three features supplies a solid basis for developing
experimental database systems. In this case, ZIM provided the basics required to build a
complete Objective-C object server. Since the meta-data is available as regular data, it is possible
to write Objective-C routines to control the class definitions in the object base. However, to have
these changes reflected in the database, routines must be written in the ZIM 4GL, since that
functionality is unfortunately not included with the PLI. How this is performed is described inthe

foliowing chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

4IM Objects (Record Structure)
Objects in a ZIM database are stored as records in a database file. The records are actually
ordinary C structures written to disk. These structures may be made up of a fairly restricted set of

data types. The following table lists the types supported by ZIM, anc their corresponding C data

type.
ZM Type CTvpe .
int short
longint long
vastint double
char! char (as an array, not a null terminated
alpha char string)
varchar? struct
varalpha struct
numeric char (restricted to digits)
date double

The structure of these records are defined in the database schema. For example, the

following schema entry:

> 2 spouse Employee vastint
> 3 empNum Employee longint 0

1 In ZIM, char and alpha fields are identical, except for their treatment when sorting or indexing. For char,
case 1s respected while sorting, while for alpha, case is ignared.

2 Variable length fields in ZIM are implemented as the following C structure-

{
short length;
char string[x];

where x 1s the maximum length of the field, as specif:ed in the schema entry. When the record is actually
written to the database, the fieid 1s compacted to the length specified in the structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

would translate into the following record structure:

{

char nullt;
char name[30];
char null2;
double spouse;
char nuli3;
long empNum;

}

The 'null’ fields are added by ZIM to allow for the storage of explicit nulls for the field values of
entities

Each ZIM database file 1s assigned a unique four digit number when it is created by the
DBMS. This number is included in the operating system filename; for example, in UNIX, a ZIM
enrtity could be stored in the file ‘zim0105'. This database file number is used by ail of the PLI
routines which operate on files. For example, to open a ZIM database file using the PLI, the
program must know its corresponding number.
ZIM Multi-User Suppont

Support for concurrent access in ZIM is quite high-level. Using the PLI, the programmer
can perform the following functions: start a transaction, abort a transaction, and commit a
transaction. Transactions may not be nested: multiple calls to the start transaction function results
in only one transaction, which is terminated by the first call to either the abort or commit function.
Two-phase locking is done implicitly by the transaction manager, so thiere is no programmer
control over their placing. Tnere is also no control over the granularity of locks: they are
maintained only at the page level. As pages are accessed during a * wnsaction, they are locked
automatically by transaction manager. and then released when the transaction either commits or
aborts Deadlocks are indicated to the application program via an error returm code, which may be

returned by any tunction which medifies the database.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

More on Objective-C

Objective-C was described briefly in Chapter Two, as an example of an object-orented

language. Recallthat it is a hybrid language. The object-onented methodology has been gratted
onto the imperative C programming language. As a result, it lacks some of the elegance of the
Smalltalk language. For example, not all data items in Objective-C are objects" a typical program
could include a mix of C primitive data types, C structures, and objects. Furthermore, while the
message-passing computational metaphor is supported, C function calls are also ailowed, and
the two may be mixed freely. Objective-C is, infact, a C superset. 't is implemented as a front-
end processor to the standard C compiler, along with some run-tirne support routines. As a
result, it contains all of the functionality of the C language, with additional support for the object-
oriented methodoiogy.

Although Obijective-C lacks some of the features of the Smalltalk system, it does share
some of the same philosophies. For example, the Obijective-C compiler comes with a class library
which contains many of the basic tools for software development, such as implementations for
sets, collections, arrays, points and rectangles. In keeping with the open-system concept of
Smalitalk, all of the source code for these classes is proviued, and they may be easily modified.
Furthermore, the source code for the message-passing, memory management and run-time
support routines is also provided.

The following sections identify certain aspects of the product that had an impact on the
design and implementation of the object server. The topics addressed include: how objects are
represented in the language, how memory is managed, how inheritance is supported, how the
message-passing computational metaphor is impiemented, and the persistent object mechanmsm

provided with the language, and why they were insufficient for the requirements of ARTTisan

‘ R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Data Aepresentation of Objects

Objects are added 1o the C language through the addition of one data type: the id. Id's
are basically pointers to C structures which have been declared using the Objective-C compiler.
They are unlike typical C pointers, however, in that they are essentially untyped. The type of an
object 1s known only by itself. Using C pointers to reference objects directly has a number of
advantages: it 1s simple to implement, all of the standard C pointer operations apply, and since
there can only be one object per address, they fulfill the identity property of objects.

Using ordinary C pointers to refer to objects, however, poses a precblem. [n Smalitalk,
references to an object are via object-oriented pointers (OOP's). Pointers to objects are actuaily
indices into an object table. The contents of each table entry contains the actual location of the
object in memory. Under this approach, there is a layer of indirection between the object and
references 'u it All objects that refer to the same object share the same OOP to it. The main
advantay ' to this approach is that the become: message can be supported. 'r'his message can
cause an object to be coerced to become an entirely new object, and all references 1o the
previoys object are gutomatically updated to reflect that change. The example shown in Figure
6 1 lustratss the difference between the two approaches. Under the Objective-C approach, if
Object1 ("Mom") and Object2 ("Dad") are instances of class Parent, then they may share a child
named "Freddy”. Smailtalk allows the same flavour of structure sharing, as is shown in the second
box Since Smalitalk uses an object table, however, it extends this functionality to support the
become: message. For example, say Object1 and Object2 want to swap their child with
Object3's child. In other words, "Freddy" will become Object3's chiid, and "Barney” will become
Object1 and Object2's child. Unaar the Smalltalk approach, it is possible to update all references

to an object

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.1: Using an Object Table

100

Objective-C Approach

Object1 Obiect?2
"Mom* l ’j ﬁDad']]
—————I
Object3
—
P "Freddy” | — |
Smalltalk Approach
Object1 E]'————‘-—
@ ———» “Freddy”
Object2 [@ }—
i @® ——¥» “Barney"
Object3 <o

Smalltalk Approach after Object3 becoma: Object1

Object1

Object2

Object3

(o

—
]

———$ "Freddy"

o

L
@ (+———¥ "Barney”

(@ —

R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

using the become message. Under the Objective-C approach, each reference to the Object 3
woula have to be found and updated in order to safely change the value of the object. In general,

this cannot be done.

Objects and C Structures
As indicated above, objects in Objective-C are basically C data structures which foliow a
format known to the Objective-C compiler. What form this structure takes may be best illustrated

using an example. Let us define a relatively simple class:

= Person : Object {
char *namg;
id spouse;
}
This declares (in Objective-C syntax) the class Person, which inherits from class Object. It has
two instance variables, name and spouse, of which spouse is actually a reference to another

object. An instance of this class would be made up of the following C structure:

{

SHR isa;
char ‘name;
id spouse;

}
The important thing to note is the addition of the isa pointer. This is a pointer to a structure which
1s shared by all instances of a class. It is the isa pointer which allows the type of an object to be

discerned at run-time The structure referred to by isa has the following format (PPI, 1986):

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

struct _SHARED {
sirtuct _SHARED ‘isa;
struct _SHARED *clsSuper;

char *clsName;

char *clsTypes;
short clsSizinstance;
short clsSizDict;
struct _SLT ‘cisDispTable;

}
The structure that represents an object includes all of the instance variables defined in its
class definition, and in the definition of all of its superclasses. For example, instances of the

following class:

= Employee : Fruit {
iong empNum;
}

which inherits from the class Fruit, would have the following structure:

1

SHARED *isa;

char ‘name;

id spouse;
long empNum;

}

The instance variables are in the order implied by the inheritance hierarchy.

Unfortunately, the object representation described above is not followed in all cases.
This is especially true of the object classes provided with the Objective-C compiler. These are
referred to as the Foundation Classes by the Objective-C documentation. Classes whic™ have a
non-typical representation include:

+ laArray: The class IdArray implements a class where the objects referred to are accessed
as indexed array elements, rather than as named instance variables. The structure of an
IdArray insiance is therafore quite different from the normal case. For example, say you

had an IdArray with ten elements, the resulting C structure would be:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

{

SHARED ‘isa;
unsigned capacity;

id contents[10];
}

Actually, IdArray instances do not declare an array for their contents explicitly. The
memory for the array is declared when the object is allocated from the heap. For example,
the above structure would be created by simply allocating 48 bytes of storage!, and then
using pointer offsets to index into the array of ids at the end of the structure.

- Clitn: The class Citn (Collection), and its sub-classes, such as Set, Bag, OrdCltn, Stack,
and Dictionary provide the various message protocols to implement these well-known
data abstractions. They all maintain the objects that they associate in instances of the
class IdArray. This, in itself, does not pose a problem. Unfortunately, though, these
classes all violate the encapsu'ation of the idArray >instance that they reference. For
example, rather than sending a message to obtain the im element of the array, they use
offse!s to point directly irto the array.

« String: The class String is similar to idArray, in that its instances ailocate an area of
storage which is not a n.. 'ed instance variable. In this case, however, it is characters
which are being stored, rather than ids.

+ Rectangle: The class Rectangle has an implementation which defies logic. Essentially,
a rectangle is represented as two Point objects: origin and corner. However, rather than

implementing the class so that it uses instances of Point in a normal fashion, the points

' The number of bytes is calculated as foilows:
isa pointer = 4
capacity = 4
contents 10@4 = Q9
48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

are embedded as structures directly in the Rectangle instance. For example, a

reasonable implementation would have defined Rectangles as follows:
Rectangle : Object {
id origin,
corner;

}
where origin ard corner would be instances of class Point. Instead, Rectangles are

implemented as follows:

Rectangle : Object {

SHARED ‘isa;

SHARED ‘isal;

int originX,
originY’;

SHARED *isa2;

int cornerX,
cornerY;

}

The two extra SHARED references are initialized ‘0 the Point class object.

One of the key concepts in object-oriented programming is that the state of an object is
encapsulated. That is, an object may only be manipulated using the operations that it provides.
Cbjective-C allows the programmer to get around this: objects can have their contents accessed
directly, as an ordinary C structure. This is not an oversight in the design of the language; it was
buiit into the Objective-C compiler as a feature to allow greater run-time efficiency for those pieces
of an application which need it. The executicn speed improvement comes from using C function
calls instead of message sends, and accessing the contents of an object using pointers instead
of messages. However, the dangers of violating encapsulation must be weighed agains? these

greater efficiencies.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

In order to gain access to the internal representation of objects of a certain class, the
application program must specify a C data type which matches the definition of that class. To
facilitate this process, Objective-C pravides the compiler directive @defs(). For example, a
programmer wanted to manipulate instances of ihe class Person. The following stateiment wouid
define the C data type required:

typedef struct { @defs(Person) } PERSON_TYPE;
Then, by casting references to instances of Fruit to pointers of type PERSON_TYPE, the
internal representation of Persons may be inspected and modified using ordinary C pointer
manipulations. For exampie, the program could inciude the following statement:
((PERSON_TYPE *)aPerson)->name = “Fred";
where aPerson is an instance of class Person.

Not only does Obijective-C allow the application developer to violate encapsulation, the
Foundation Classes regularly violate this principle, as mentioned in the previous section. For
example, the classes which implement the various specializations of collections (stacks, sets,
ordered collections, etc.) maintain their contents as instances of class IdArray. idArrays are arrays
of pointers to objects. A strictly object-oriented implementation of these collection classes would
require that any manipulations of their contents would be done using the message protocol of the
ctass IdArray. Unfortunately, this was not done. The collection classes use all of the various
pointer manipulation tricks available in the C language to access their contents. Encapsulation
was violated in order to gain some efficiency.

Memory Management
The objects which represent both classes and their instances are really nothing other

than C structures. However, there is a difference in how memory for the two is allocated. Class

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

objects (referred to as factory objects in Objective-C documentation) are allocated statically, at
compile-time. Their addresses are used to build a class table for the executable image, which is
used by the language’s run-time system.

Instances are allocated at run-time from the heap, using the standard C memory functions
alloc and dealloc. There is, however, two layers of abstraction built around these calls. From the
users'’ point of view, the first layer is a message protocol, implemented by class Object, which
provides the basic memory operations to the developer. This message protocol uses the class
method new, which allocates new instances ot a class, and the instance method free, which
deallocates an object. Note that there is no garbage collection in Objective-C. Objects which are
no longer needed must be identified and returned to the heap explicitly by the programmer.
Since it is not possible to know a priori the location of all references to an object, it is very easy to

leave 'dangling pointers' to objects when they are freed. In order to help identify such bugs,

when an object is freed, the Objective-C memory management routines set the object’s isa
pointer to nil before returning the object to the heap. The message-passing routines will raise an
error if any message is sent to an object with a nil isa. Unfortunately, this will not help if the
memory returned to the heap when the object was freed has been re-allocated before the
offensive message send. Under this scenario, bizarre and catastrophic results are to be
expected.

The message protocol for memory management cails a number of functions which are part
of the Objective-C run-time support library. These functions: _alloc(), _realloc(), and _dealloc(),
are not called directly. Instead they are called through pointers to them. For this reason, these
function are generally referred to as (*_alloc), (*_realloc) and (*_dealloc). The names of the

functions themselves remain hidden. As a result, it is straightforward to replace the memory

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

management provided with the language with a new set of functions, which presumably extend
their functionality.
The M -Passing M .

Objective-C implements the message-passing computational metaphor using a
combination ot compile-time and run-time facilities. When Objective-C programs are compiled,
the methods defined by each class are transformed into ordinary C functions. For example, say
that the class Person described above has a method defined as:

-name:(char *)aName |

name = aName;
return seilf;

}
This method wot.id be compiled to a C function which looks like:
(char *)_1_Fruit(self, selector, aName)
id self;
char *selector;
char ‘aName;

self->name = aName;
return self;

}

The compiler maintains a table which maps the <class, message selector> pair to the the correct
function.

Message sends are enclosed in brackets []. These are recognized by the compiler and
translated into C iunction cails to either _msg() or _msgSuper(). The arguments to these
functions are the object id receiving the message, the message selector, and the arguments to

the message itself. The C definitions of these functions are as follows:

-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108
(id)_msg(receiver, selector,)
id receiver;
SEL selector;
(id)_msgSuper(class, selector,}
SHR class;
SEL selector;
where "...." indicates the additional parameters to the method itself whose number and type vary.

For example, the message send:

[aPerson name: "Fred"],

would compile to the following function call:
_msg(aFruit, "name:", "Fred");"

The _msg() function provides the basic message sending mechanism. It takes the
receiver of the message, along with the message selector, and looks up the address of the
correct function. Control is turned over to that routine, without modifying the stack. The
_msgSuper() function is similar to _msg(), but it provides support for messages to super.
Messages to super are treated as a special case, since by definition they can only be called from
within an instance method. As a result, self is known to be at a centain location in the caliers stack
frame.

Obviously, since a message send results in a search, (which inay be proportional to the
depth of inheritance) and the overhead of several function calis, they are more expensive than
an ordinary function call. They are estimated to be 2 to 2.5 times as expensive as a function call
(Cox, 1986). The message kernel has a number of features designed to improve execution

speed. The first of these is that the _msg() and _msgSuper() functions are actually implemented

1 The selector passed to the _msg and _msgSuper function is a pointer to the unique character string
contained in the message table maintained for each class. This allows the method lookup routines to use an
ordinary pointaer comparison (==) to find the implementation, rather than a morae expansive string
comparison (strecmp).

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

in assembler, to ensure that they are executing as quickly as possible. The second is that they
maintain a cache of the most recently called methods. The cache is maintained as a hash table,
keyed on the <class, message selector> pair, which has two fields. The first is a marker which
represents the pair, and the second is the address of the fur.ction which implements it. For each
message that is sent, the hash value is calculated, and the marker is checked to ensure that it
matches the current pair. If it does, it is immediately branched to; if it does not, _msg() or
_msgSucer() calls the implementation lookup routine _msgimpFind(}, and the implementation it
returns is used to update that location in the hash tabie. For most applications, the cache hit ratio
is 95% (Cox, 1986).

The function _msglmpFind() has the following C declaration:

(IMP)
_msglmpFind(refSelf, cls, selector)
i *refSelf;

SHARED *cls;

char *selector:

refSelf is a pointer to the object (self) that was originally passed to _msg(). More specifically, itis a
pointer to the location of seif on the stack. Changing the value of refSelf to another object
therefore effectively changes the object which is being sent the message.

It no implementation can be found which matches the selector of the original message

send, an error geeurs. The error-handling mechanism works as follows: if _msgimpFind() cannot
find a match for the <class, selectors pair passed to the routine, it sends the message
"doesNotUnderstand: selector' to the receiver of the message. The default mechanism
provided by the class Object resuits in an fatal error, and the program terminates with a suitable
message displayed to the user. In Smalitalk, this mechanism has been used by a number of

researchers to provide support for persistent and distributed objects (McCullough, 1987),

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

(Bennett, 1987), and (Merrow and Laursen, 1987). The method “"doesNotUnderstand:
message” has been modified to trigger a read to the object base, for example, when a particular
class of object receives a message. Unfortunately, this approach cannot be used with Objective-
C. The reason lies in the different parameters to the doesNotUnderstand: method. 'n Objective-
C, alithat is passed is the message selector originally sent to the object. In Smalltalk, the entire
message is passed. The message is an object which contains both the message selector and alt
of the parameters passed with the selector. As a result, in the Smalltalk implementation, if the
correct receiver object can be found by the doesNotUnderstand: method (by reading it from the
object base, for example), the original message can then be sent to it.

To illustrate the above, consider the following example. In both Smalltalk and Obijective-

C. you have implemented a class called NetworkServerObject, whose sole purpose is to forward
any message its instances receive to some Network object. The Network could be, for example,
a facility to support distributed objects. In Smalltalk, this woulid be a s*raightforward exercise. Just

implement a doesNotUnderstand: method for class NetworkServerObiect which looks like:

doesNotUnderstand: message
ANetwork perform: message selector
withArguments. message arguments

So, for example, the message

aNtwkObj keyWord1: parmi keyWord2: parmz2.
would be transparently forwarded to the Network object. In Objective-C, you have a problem
Since all that is passed to the doesNotUnderstand: is the selector of the message (in this case
"keyWord1 keyWord2:"), the parameters are lost. They are somewhere on the stack, but there s

no mechanism provided to the applications developer to access them easily.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

Just as it is possible to circumvent the encapsulation of objects in Objective-C, it is also
possible to bypass the message-passing mechanism. This is done by acquiring the address of
the C function which implements a method for a particular class. A message protocol for doing so
is provided by the class Object. This can provide some performance improvements when the
type of the objects to be addressed is known in advance, with the danger that bizarre results may
occur if the function is called with another type of object.

Obiect Persi Mechani Provided by Obiective-C

Objects may be stored on disk using the AsciiFiler routines provided with the language.
Under this approach, a complex object, and ail of the objects reachable from it may be written out
1o an ascii file. The intemal C representations of all of the object classes defined to the Objective-
C compiler have a corresponding ascii representation that is known to the AsciiFiler class.

The protocol provided by the AsciiFiler is based on two messages: storeOn: and
readFrom:. The storeOn: message takes a file name as its parameter, and when sentto a
complex object, stores the graph of all objects reachable from :: in the specified file. The
readFrom: message provides the opposite functionality, reading in an object graph from a
specified file.

Why They Are Not Enough

If Objective-C already provides a method to save complex objects to disk, what is the
motivation for creating an object server for the language? The following are the features which
extending the language with database-like facilities is expected to provide:

* The granularity with which objects can be saved and restored is much finer. Under the

AsciiFiler approach, only entire object graphs may be made persistent. Therefore, while

N

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

large objects can be saved into the database, only those pieces which ara actually being
used by the application need to read into memory.

» Objects which are shared between a number of complex objects are stored only once,
thus increasing the integrity of the persistent data. Under the AsciiFiler approach. itis

possible to store separate copies, in a number of different files, of an object which i1s

shared. This leads to the possibility of having inconsistent versions of the same logic 1l
object stored in in different files. Basically, once an object has been written to disk using
the AsciiFiler approach, it loses its property of identity. The object is only unique within
the file in which it is stored, rather than being unique throughout the entire problem
domain.

* Much of the work performed by the AsciiFiler is devoted to converting the format of the
objects from their intemal C representation to some ascii representation. This is avoidable
using an object server which supports the primitive C data types.

- Indices on objects will speed their recovery from th~ object base. However, this causes a
corresponding penalty when adding and updating objects, due to the overhead of
maintaining the indices.

* An object server offers a number of database amenities such as: transactions, indexing
and muiti-user concurrency control. These will be required to support any CASE
environment which intends to meet the needs of development teams, as opposed to
individuals.

inking G ith the Applicati
Objective-C is a C super-set. Ultimately, the Objective-C code is changed to ordinary C

statements and then compiled to an executable program. Like any other C program, an

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Objective-C application must have a function main(}; in addition, a table of all of the classes used
by the application are required to support the run-time messaging kemel. A typical Objective-C

|- rogram will therefore be made up of a number of files which specify the classes being
implemented, and then one additional source file which declares main, and defines the cl/ass
table. The class tatle maintains the static address of every .iass used by the application. In order
to create this table, the classes which are being used by the appiication must be linked, and their
locations added to the table during compile-time. Since the type of an object is not resolved until
run-time, the compiler must be explicitly told which classes to link. There are two mechanisms
provided bv the Objective-C compiler to do this. These are the @requires statement and the
@classes statement.

Tie @requires statement is placed in the source code of a class definition and specifies
the other classes which are to be used by the one being specified. The compiler wiil then ensure
that the classes specified are made available for messaging. Any applications which include the
class being defined wil! also include the classes mentioned in the @requires. For example, if you
were defining a class MyClass which was to send messages to the classes String, Dictionary and

Sel, the definition would look like:

@required String, Set, Dictionary;

= MyClass : Object
{list of instance variables)

The @classes statement is placed in the same source code fiie that contains the function

mamn. The list of classes specified in the @classes statement act as roots of class usage trees,

wtich the compiler uses to build the class table. The compiler will link ali of the classes specified in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

the list, their superciasses, and the classes which they directly use, as specitied in their
@requires statement. For example, the statement @classes(MyClass) would cause the classes

MyClass, Object, String, Set, and Dictionary to all be included in the executable image.

6.2. The Object Server/Language Interface

In the prcvious chapter, the manner in which objects are represented in the database was
described. However, since we are building an object server for the Objective-C language, the
next questions are: how are persistent objects represented to the Objective-C application? In
addition, how is the relationship between an object in memory, and its representation in the
database maintained?

The design of the object server may be described largely in terms of the implementation

of two classes: Proxy and ObjectManager. The Proxy class will be described in detail in the
following section. The ObjectManager provides the interface between object server and the
Obijective-C application. It maintains a cache of all of the persistent objects accessed by the
application. It provides the capability to read and write persistent objects. In doing so, the
ObjectManager utilizes metadata which describes an object's representation, both &s a database
record and an Objective-C object. In general, it is responsible for communicating between the
application and the ZIM PLI routines which provide low level access to the object base. The
ObjectManager is described in detail in the following chapter.
Proxy Objects

Persistent objects in the object base are mapped to dynamic Objuctive-C objects using
instances of the class Proxy. Proxies are placeholders which represent pe¢rsistent objects. Proxy
objects are similar to the Agent objects describad in (Purdy, Schuchard’ and Maier, 1987). They

are a packaging of the persistent object in the address space of the apphcation; they provide for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the caching of objects which have been accessed; and they provide a seamless integration of the

application code and the object server.

Proxy objects provide locational transparency: the application program does not know if a
persistent object is in memory or on disk. As a result, the programmer does 1ot have to deal with
the problems of caching and communicating with the object server. When a niessage is sentto a
Proxy object, the system is responsible for ascertaining whether the nersistent object the Proxy
represents is already in memory, reading it in if it is not, and then forwarding the message to the
reai object for execution. This occurs transparently to the application.

When an object is read from the object base, all instance variables which are themselves
objecis are initialized as instances of class Proxy. Note, however, that a persistent object has
only one Proxy object within an application. Multiple references to the same persistent object
point to the same Proxy object. The ObjectManager maintains a hash table of all of the active
Proxies in order to provide this feature. The ObjectManager returns a Proxy for the object'base
root object when it is opened. Every object in the object base is reachable from this root.

A persistent object is read into memory when its Proxy object first receives a message.
This process is illustrated in Figure 6.2 a & b. In this example (which is based on the previous
example shown in Figure 5.2), the object representing Fred le'Janitor has been previously sent a
message by the application. As a result, the object has been read into memory. Note that it is
actually referenced via a Proxy object, which knows the value of Fred's database OID, and points
to the object that represznts Fred. Fred's spouse instance variable also points to a Proxy
instance. However, since no message has yet been sent to the object representing Molly
le'Janitor, that Proxy object has nil as the value of its realObject. Once a message has been sent

to Fred's spouse, Molly's object is read into memory as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

The class Proxy has the following Objective-C definition:

= Proxy : Object {
double oid;
id realObject;

char beenHere;
}

Where oid contains the database sumrogate for the persistent object; realObject contains the

object being represented by the Proxy; and beenHere is used when creating graphs of
persistent objects when writing them to the database. Note that the realObject variable is set to nil
if the object has not been read into memory. Intuitively, Proxy objects are an <oid, object> pair.
They maintain the mapping from the persistent object's database identifier, and the real object
which it represents

The Proxy class has no instance methods. This is simiiar to the approach taken by (Purdy,
Schuchardt and Maier, 1987). However, in their implementation, messages to Agent objects
resulted in the doesNotUnderstana message being invoked. In the approach taken here, the
message-sending routines of the Objective-C language have been altered to intercept messages

sent to Proxies. As aresult, itis impossible for a Proxy to receive a message.

—_— |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

Figure 6.2 a): Reading an Object (Before)

= Person : Object { // ZIM file 101
char name[30];

i

= Employee : Person { // ZIM file 102
int empNum;
id spouse;

}

Situation 1: The object representing the employee Frad le'Janitor has been read in
previously. At that time, its 'spouse’ instance variable was initialized to a

Proxy object, whose realCbject pointer is nil, since Molly le'Janitor is still

on disk. Note that Fred's object is referenced via a Proxy object as well

anEmp @——#{1111.0102 ®

(a Proxy) ;

Fred le'Janitor 999 ,
(an Employee)

2222.0101] ==
(a Proxy)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2 b): Reading an_Object (After)

Situation 2: A message ({spouse describe]) has been sent to Fred's 'spouse’
instance variable, and, as a result, Molly's Person object has been read in.

anEmp @——1{1111.0102] @
(a Proxy) l

Fred le'Janitor 999 ’
(an Employee)

(a Proxy)2222.0101| @

rMolly le'Janitor

(a Person)

Intercepting Messages: Changes to the Objective-C Messaging Kernel

Recall from the previous chapter that in Objective-C, the methods which implement a
class's protocol are compiled to ordinary C funciions. When a message is sent at run-time, the
messaging kernel looks up the address of the function which implements the method, and
branches
to that location. The Objective-C messaging kernel is made up of three functions: _msg(j,
_msgSuper(), and _msgimpFind(). Message sends in an Objective-C program compile to calls to
either _msg() or _msgSuper(). _msg() and _msgSuper() are responsible for finding the address

of the function which implements the method, and branching to that location The most recently

-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

used methods are maintained in a cache shared by the two functions, which are written in
assembler. if the method being called is not found in the cache, then _msgimpFind() is called to
search for it. The value returned by _msgimpFind() is used by the calling function to update the
cache.

In order to meet the goal of locationa! transparency of persistent objects, a number of
changes were made 1o the Objective-C message-passing kernel. Before describing those
changes in detail, let us tum to the end-result; what happens when a message is sentto a
persistent object? To aid us, let us extend the previous example using the classes Employee

and Person. Let the class Person implement the following method:

-describe {
printf("%30s", name);
}

and the class Employee implement the following method:

-describe {
printf("%30s %d", name, empNum);
[spouse describe];

What happens if the message "describe” is sent to the (Proxy) object "anEmp" shown in Figure

6.27 In other words, [anEmp describe] is performed. The sequence of events are as follows:

= First, it must be realized that the application does not have a handle on the persistent
object directly. Instead, references to the persistent object are to its unique Proxy
instance. AnEmp is pointing to a Proxy, rather than to an Empioyee. Note that since

Proxies are objects, they all reference the same class object through their isa pointer. As

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

aresult, itis possible to quickly determine whether or not an object is a Proxy be

examining its isa value.

Message sends resuit in a call to the function _msg(). This routine checks if the object
being sent the message is a Proxy by checking its isa pointer. If it is a Proxy, the routine
_msgimpFind() is called immediately. If not, the reqular messaging routine is continued
with. In this case, since anEmp is a Proxy, the former case holds. Note that
_msgimpFind() may be called to service messages to non-persistent objects as well.
The first action done by _msglmpFind() is to check whether the object being sent the

message is a Proxy object. Recall that _msgimpFind() has the following definition:

(IMP)

_msgimpFind(refSelf, cls, selector)
id *refSelf;
SHARED *cls;
char *selector;

where refSelf is a pointer to the object (self) that was originally passed to _msg(). In this
case, (‘refSelf) is anEmp, which is a Proxy object. If refSelf points to a Proxy object,
refSelf must be changed to the value of the Proxy's realObject. If realObject is nil, then
the ObjectManager must be called to read the object from the database. The actual code

is as follows:

if ((*refSel)->isa == _Proxyisa) {
if ((PROXY_TYPE")(*retSelf))->realObject != nil)
{(*refSelf) = ((PROXY_TYPE")(*refSelf))->realObject;
else {
((PROXY_TYPE")("refSelf))->realObject =
[ObjectManager get: (*retSelf)];
(“refSelf) = ((PROXY_TYPE®)("retSelf))->realObject;

e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Note that refSelf is pointing to the location of the message receiver on the program stack.
When the object peinted to by refSelf is altered, the receiver of the message has been
altered. In this case, the Employee object referred to by anEmp is already in memory. As
aresult, the vaiue of refSelf can be changed using one pointer manipulation. Access to
persistent objects which have already been read is therefore quite efficient.
The implementation of the "describe” method for the Employee class is found, and a
pointer to it is returned to the _msg() routine.
« _msg() takes the function address returned by _msglmpFind(), and branches directly to
that location. In this case, first the C library function printf is performed, and then the
message "describe” is sent to the Employee’s spouse. The message-passing routine
starts all over again. The process is identical to the one described above, with one
notable exception. At the time of the message send, the Employee's spouse has iiot yet
been read into memory. As aresult, the ObjectManager is requested to do so. The value
of the realObject instance variable of the spouse’s Proxy is changed to point to the object
read. Note that since each database object may have only one Proxy object within an
application, this change is reflected by all other references to the spouse object, if any.
Polymormphism and the Message Cache

The previous example may also be used to illustrate a subtle, but potentially dangerous
facet of how messages to Proxies must be handled. Recall that the functions _msg() and
_msgSuper() share a cache of all of the recently accessed methods. This cache is implemented
as a hash table, whose key is the <class, selector> pair which uniquely identifies a method.
When the method is not found in the cache, the _ msgIimpFind() routine is called, and the

function address returned by it is used to update the cache slot.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

Consider what would happen if polymorphic behaviour was expected ot objects
represented by Proxies, if the message cache was used as normal. Figure 6.3 illustrates the
point. Inthe previous example, the "describe” message was sent to the Proxy objects
representing an Employee and a Person. The Employee's Proxy receives its message first. In
the _msg() function, the <class, selector> pair was <Proxy, "describe">. Assume that the cache
slot for that pair was empty, so the _msglmpFind() routine was called to look up the address of the
implementation. The function address returned _msgimpFind() was the method which actually
matches the pair <Employee, "describe">. Th. address of that function was placed in the cache
slot, and the method was then executed.

The "describe" instance method implemented by the Employee class sends the
message "describe” to the spouse object which, in this case, is expected to be a Person. Note
what would now happen in the _msg() function. Once again, _msg() is called with the <class,
selector> pair <Proxy, "describe">. This time, however, a match is found in the cache, and thai
function is branched to. Unfortunately, the wrong function has just been called, since the
implementation of "describe” for the Employee class was found, rather than the implementation
for the Person class. Bizarre and dangerous results would result if this problem was not
addressed.

'n Figure 6.3, then, we see the following:

» |n situation (A) - which is the normal Objective-C situation - we see that the two classes

Person and Employee each have their “"describe” method placed in 2 separate slot in the

message cache.

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

« In situation (B) and (C), we have a more dangerous situation, since both the Employee
and Person objects are, in fact, represented by Proxy objects. This confuses the normal

message-passing and caching mechanisms.

-

—————————————————— |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.3: The Objective-C Message Cache

Objectiva-C Massage Cache:

(A) [aPerson describe];
[anEmployee describe];

_2_Person(self, selactor)

Class Selector
Person "describe" | @
Employee | "describe” | @<

\ﬁg_Employee(self, SG'SCtOf)
(B) [aPerson describe]);

Note that aPerson is actually a Proxy object.

The message "describe” has been sent to a Proxy representing a Parson. The cache is
updated with the function address returned for the <Proxy,

"describe"> pair.
Class Salector
Proxy "describe" | @

_2_Person(self, salactor)

_9_Employee(seif, selactor)
(C) [anEmployee describe];

Note that anEmplovee is actually a Proxy object.

The message "dascribe” has been sent to a Proxy representing an Employea. Since a

<Proxy, "describe"> pair is found in the cache, that function is executed and an error
results.

if, lecto
Class Selector /_2_Person(se se r)
Proxy "describe”

_9_Employee(self, selactor)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

In order to handle to handle this problem, the _msg() function has been altered to identify
messages to Proxy objects. When such an occurrence is detected, the cache lookup code is
bypassed. Instead, the _msgimpFind() routine is called, and the control is turned over to the
function address it returns. The return value of _msgimpFind() is not used to update the cache,
as is the normal case. As a result, messages to ‘ordinary’ objects continue to utilize the message
cache, while messages to persistent objects always require a call to _msglimpFind() in order to find
ihe address of the specified method. This has performance repercussions, since the search
undertaken by _msglmpFind() may be proportional to the depth of the inheritance tree of the
receiver object. An ‘industrial strength’ implementation could maintain a separate cache for Proxy
object messages; or, alternatively, the <class, selector> pair used to hash into the cache could
be created using the class of the realObject pointed to by the Proxy obiject.

The Dangers of Violating Encapsulation

One of the features of the Objective-C language is that it allows the \;iolation of the
encapsulation principle inherent in the coject-oriented paradigm. It is possible to get a handle on
the internal state of an object directly. A purist approach, such as the one taken in the Smaiitalk
language, demards that all object manipulations be done using the operation provided by the
object itself. With respect to the implementation of an object server for the language, this
approach is a double-edged sword. On one hand, being able to violate encapsulation was a great
help in implementing the class Proxy. Since it is impossible t0 send a message to a Proxy object
{all messages are passed along to the persistent object represented by the Proxy), the only way
for the object server implementation to modify or access Proxy objects was to do so directly.
Essentially, Proxy objects are treated by the object server implementation much like a reqular C

structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

On the other hand, applications which insist on violating the encapsuiation of persistent
objects must be very careful, or disaster will result. Since references to persistent objects are
done so via Proxies, any attempt in the application code to point directly to the instance variables
of a persistent object must recognize the existence of Proxies, or it will be using incorrect oftsets
Instead of pointing to an object of class Employee, for example, and offsetting to gain access to
the empNum variable, the program would be pointing to a Proxy object, and the same offset
would be pointing at the value of the ‘realObject’ instance variable within the Proxy.

Typically, when an Objective-C program violates the encapsulation of an object, it does
so by casting the parameters of a method to be of the expected type. Figure 6.4 provides an
example code fragment which shows how a method which violates the encapsulation of an object
would have to deal with the Proxy interface. This code wouid have to replicated in every msthod
which attermnpted to deal with objects directly.

Figure 6.%2. Dealing WIith Proxies Explicitly

@requires SomeCilass, ObjectManager, Proxy;
typedef struct { @defs(Proxy) } PROXY_TYPE;
typedef struct { @defs(SomecClass) } SOME_TYPE;
/I The method casts its parameter to be an instance of a specific class.
-aMethod:(SOME_TYPE *)parm1 {
/l First, check to see if the parameter is a Proxy object
if (parm1->isa == Proxy) {
// Has the object been read from the object base?
parmi1 = (PROXY_TYPE *)parm1;
if (parm1->reaiObject == nil)
parmi = (SOME_TYPE *)parm1->realObject;
else { // Read the object into memory
parm1->realObject = [ObjectManager get: parm1];
parmi = (SOME_TYPE *)parm1->realCbject;
}

/* Then the method may continue normally.... */

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

7. The ObjectManager
Any application which wishes to use the object server must link the Objective-C class
ObjectManager. The ObjectManager provides the major components of the object server's
functionality. These include:
« Transferring objects from memory to disk, and vice versa. In order to do this, the
ObjectManager accesses metadata which describes the representation of objects.
- Caching objects which have been read frori the database. The cache is maintained as a
hash table.
- A message protocol which allows the application to start and end ObjectManager

sessions.

7.1. The Object Schema

Before the inner workings of the ObjectManager can be described, the concept of the
object schema must be explained. The object schema provides the 'data about the data' - or
metadata - that the system requires to manipulate the persistent objects.

The format of the metadata required by the object server was largely motivated by the
format maintained by ZIM. Recall that a ZIM database schema is described largely in terms of the
two entity sets: EntitySets and Fields. The object server schema is described largely in term of
two classes: Class and InstVar. How the object server metadata is used to maintain the ZIM

database schema is discussed at the end of the chapter.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Defining a Cilass
The object server must maintain information which allows it to describe both the ZIM and
Objective-C represe—tation of an object. Since the ZIM DBMS maintains records which are

essentially C structures which have been written to disk, why are these representations difterent?

« ZIM places a 'null’ byte before the beginning of each field in the record. This is used by
ZIM applications to store explicit null values in the database. These null bytes must be
removed upon reading the object from the database, and inserted when the object is
written.

- Each instance in the object server must contair that object's OID. This value is kept in the
first field in the record which represents the object in the database. When the object is
read by an Cbjective-C application, this OID is used to find the object in the database.
Once the object is read, the OID is maintained by the object's Proxy. It is not contained in
the obje:t itself.

- Obijects in Objective-C have, as their first instance vanable, their isa pointer. Isa points to
the object’s factory object. This pointer must be initialized when the object is read, and
removed when the object is written.

« References to other objects are handied differently in the persistent and dynamic
representations of the object. In Objective-C, object references are via pointers of type
id. These require four bytes of memory. Persistent objects refer to each other via OIDs,

which require eight bytes of storage. When an object is read, its referencec to other

objects are represented by a Proxy instance. When an object is written, its references 1o

other objects are represented by the QID stored within the Proxy.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Recalt that all objects are unique instances of some class. This means that the object
server must know the classes that it is expected to maintain, and their format. To do so, the class
Class is used. Instances ¢f Class correspond one-to-one with the Objective-C classes far which
the toolset designer wishes to maintain persistent instances. The class Class is itself an
Objective-C class which is known to the ObjectManager. As we shall see, it is an example of a

class which has several instance variables which are not persistent. it is defined as follows:

= Class : Object {

id name,
superClass,
instvars,
factoryObject,
subClasses,
dbSet,
getSel,
putSel;

short classNum;

}

Where the instance variables have the following meaning:
name - The String object which contains the name of the Class (ie. "Object").

superClass - The Class object which specifies the class's superclass.

instvars - The ordered collection of all ¢f the instance variables which make up the class.
The specification of the class InstVar will he described below.

factoryObject- The location of the actual Objective-C factory object which is used to create new
instances of the class. The factoryObject is not a persistent object, since it is
only meaningful at run-time.

subClasses - The ordered collectinon of all of the class's subclasses.

dbSet - An instance of class DBSet, which is used to read and write instances of the
class to and from the underlying ZIM database. dbSet is not a persistent

object, since it is only meaningful at run-time.

getSel - The String object which represents the selector which is to be sent to the Class

instance in order to have an object of that class read from the database. This is
needed to handle the accessing of classes which are a special case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

putSel - The String object which represents the selector which is to be sent to the Class
instance in order to have an object of that class written to the uatabase. This is
needed to handle the accessing of classes which are a special case.

classNum - The ZIM file number of the database fite which contains the class. All instances
of the persistent class are held in this file.

The class InstVar is crucial to understanding the object schema. Class objects use
InstVars to describe both the persistent and dynamic representation of their instances. The

implementation of InstVar is as follows:

= InstVar : Object {

id name,
pantOfClass;

int type;

BOOL index,
persistent;

short length;

}

Where the instance variabies have the following meaning:

name

The String object which contains the name of the InstVar (ie. "name").

partOfClass The instance of Class which this instVar is part of.

type - An enumerated type which indicates the data type of the instance variable
(ie. "DB_ID", "DB_INT", "DB_DOUBLE", ..)).
Index - A Booiean variable which indicates whether or not this variable has a ZIM index
based on its value.
persistent - A Boolean variables which indicates whether or not this variahle is persistent.
For example, in the class Class, dbSet would have a value of NO, while
name would have a value of YES.
length - Used to indicate to ZIM how long a character array instance variable 1s

Supporting Inheritance
The inheritance tree of an object class is described explicitly in the metadata through the

Class instance variable superciass. Atthe root of the class hierarchy is the clase Object, which has

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

a superclass of nil. Each Class maintains an ordered collection of the Classe< which inherit fromiit.
Thus the superClass and subClass links define the inheritance hierarchy An example inheritance
hierarchy implemented in this fashion is shown in Figure 7.1. Each Class object maintains an
ordered collection of its instance variables. it should be noted that the Class Object defines the
instance variable "oid”. Since all objects inherit from Object, this ensures that all persistent
objects have this instance variable defined.

There is @ message protocol to query a Class object about its instance variables, made up
of two messages:

« yourinstVars retumns the instance variables specified for this class. It ignores a. y instance
variables defined in its superclasses. For example, the Person class cbject would
respond to this message with a coliection containing the InstVar instances for “name”
and "spouse”. The Employee Class object would return a coilection containing only the
instVar instance for "empNum"”.

« instVars returns all of the instance variables defined for a class, includi/g those defined in
its superclasses. It is implemented in terms of yourinstVars. The array of InstVars
returned has the superclass's instance variables first. For example, the Employee class
would respond with a collection containing the InstVar instances for "oid", "name",
"spouse”, and "empNum".

For example, the instVars message would be used to get the list of instanca variables which fully
describe an object when reading it from the object base. The yourinstVars message could be

used

Reproduced@ith permission of the copyright owner. Further reproduction prohibited without permission.

132

Figure 7.1: Supporting Inheritance

= Person : Object { // ZIM file 101
char name|[30];
}
= Employee : Person { // ZIM file 102
int empNum;
id spouse;
}
®| o
\
LRI -1 oid o
@® 102
N
' !
R name
Empioyee - | @ |105
\
. empNum | @
‘ ‘‘‘‘‘‘
spouse
Key:
e superClass
SRRRTS o subClass
_ partOfClass (for instance variables)
----- - instance variable

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

in constructing a browser for the object schema, where you would wish to deal with only the

instance variables defined in a particular class.

Metadata Access

The object schema is read from the object base by the ObjectManager in response to the
open message. There are several implementation details to note regarding how this is
performed:

» The code to read the object schema doe. not utilize the normal ObjectManager methods
for reading objects, since that code relies on the metadata. You cannot use the metadata
to read the metadata. Note that this does not imply that the object schema may not be
manipuiated by applications which use the object server. An example of such an
application is the Browser described in the following chapter.

» The Class and InstVar instances which make up the object schema are not represented by
Proxy objects within the ObjectManager. It has a direct handle on the pérsistent objects.
This is safe since the ObjectManager never modifies the metadata. The Ciass and InstVar
instances which are re xd when the ObjectManager is opened are discarded when it is
closed. By allowing these objects to be handied directly by the ObjectManager,

performance gains are realized, since messages to non-Proxy objects use the message

cache.
+ The root of the inheritance hierarchy is the class Object. This object has one special

property that is hard-wired into the system: it has an Object Identifier (QID) of zero (0)1.

1 Actually, it has an OID of 0.0104, where 104 is the ciassNum of the class Class.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

This allows the ObjectManager initialization code to read in that object from the database

directly, and then read ali of Object's subclasses recursively.

7.2. An Objective-C Protocol for the ZIM PLI

The ZIM PLI provides a number of C functions which may be used to access, add,
change and delete records and index entries in ZIM database files!. Since all of the instances of
an ciass are maintained in the same ZIM database file, these operations are the equivalent to
adding, changing and deleting instances of classes.

Access to the database files is provided by two abstractions: the ZIM entity set (ZESET),

and the ZIM index /7INDEX). A ZIM entity set is essentiaily a pointer to a C structure which

provides a reference to the contents of a ZIM database file. The pointer is returned by the PLI
function which opens a file, and it is passed as a parameter to all of the PLI functions which
manipulate the records in the file. The ZESET structure maintains a ‘current record’, which is
essentially a pointer to a specific record in the fite. This current record pointer may be moved
explicitly using a 'get next record’ function, or by using an index to locate a object which has a
specific value for an instance variable.

Cnce an entity set has been opened, any - _.ces which exist may also be opened. A set
of PLI functions exists which will locate specific records in the file based on a specific value and a
Boolean operator (ie. <, <=, =, =>, > or !=). New records may be added, and existing ones
updated or deleted. Note that it is up to the program modifying the record values to update any
associated indices. Failure to perform these index updates correctly could result in the corruption

of the database.

1 Additional PLI functions are provided to support session contral, secunty, and concurrency control

e ————————————— |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

There is ore smrall, but important detail regarding the ZIM PLI which must be made
explicit. When using ine PLI. it is recommended that the application open and close the entity
sets and indices very frequently. A typical sequence would be:

open eniity set
open index1
open index2
locate a record using index1
modify the retrieved record
write the updated record
update index1
update index2
close index1

close index2
close entity set

It should be noted that closing the entity set has relatively little overhead associated with it. This is
because closing the entity set dces not normally result in the closing of the underlying file. ZIM
maintains a ring of recently accessed entity sets, and a file is physically closed only if necessary.
The nurnber of open files allowed is a parameter which the user may control. Closing entity sets
and indices does cause any modified buffers to be flushed back to the disk file.

A ZIM database file may be mocelled effectively as a pointer to a ZESET structure, with an
associated collection of indices. The class DBSet performs this role. Instances of class DBSet are
created at run-time, as the different classes in the object schema are requested to read, write or
modity their instances. The basic approach is that instances of DBSet are responsible for dealing
with accesses to the ZIM database. They retrieve, add, change and delete instances of classes
in the database. However, it is the Class objects which are responsible for translating between
the persistent and dynamic representations of the objects. There is one DBSet instance for each

active Class. DBSet has the following structural definition:

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

michael

Application: PrintMonitor

Document: Michael's Thesis

Monday, November 14, 1988

10:21:17 PM

Printer: 3.A16.Plus.Telos.MaclLeod,R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2 a): Reading an Object (Before)

= Person : Object { // ZIM file 101
char name[30];

}

= Employee : Person { // ZIM file 102
int empNum;
id spouse;

}

Situation 1: The object representing the employee Fred le'Janitor has been read in
previously. At that time, its 'spouse’ instance variable was initialized to a

Proxy object, whos2 realObject pointer is nil, since Molly le'Janitor is still

on disk. Note that Fred's object is referenced via a Proxy object as well

anEmp @—{1111.0102 ®
(a Proxy) l

Fred le'Janitor 999| @
(an Employee)

2222.0101] =
(a Proxy)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 6.2 b): Reading an Object (After)

Situation 2: A message ([spouse describe]) has been sent to Fred's ‘spouse’
instance variable, and, as a result, Molly's Person object has been read in.

anEmp @—#{1111.0102 9
(a Proxy) l

Fred le'Janitor 999
(an Employee)

@

(a Proxy)2222.0101] @

rMol!y le'Janitor

(a Person)

Intercepting Messages: Changes to the Objective-C Messaging Kernel

Recall from the previous chapter that in Objective-C, the methods which implement a
class’s protocol are compiled to ordinary C functions. When a message is sent at run-time, the
messaging kernel looks up the address of the function which implements the method, and
branches to that location. The Objective-C messaging kernel is made up of three functions-
_msg(), _msgSuper(), and _msgimprind(). Message sends in an Objective-C program compile

to calls to either _msg() or _msgSuper(). _msg() and _msgSuper() are responsible for finding the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

address of the function which implements the method, and branching to that location. The most
recently used methods are maintained in a cache shared by the two functions, which are written in
assembler. If the method being called is not found in the cache, then _msglimpFind() is called io
search for it. The value returned by _msgimpFind() is used by the calling function to update the
cache.

In order to meet the goal of locational transparency of persistent objects, a number of
changes were made to the Objective-C message-passing kerriel. Before describing those
changes in detail, let us tum to the end-result; what happens when a message is sent to a
persistent object? To aid us, let us extend the previous example using the classes Employee

and Person. Let the class Person impiement the following method:

-describe {
printf("%30s", name);

and the class Employee implement the following method:

-describe {
printf("%30s %d", name, empNum);
[spouse describe];

What happens if the message "describe” is sent to the (Proxy) object "anEmp" shown in Figure
6.27 In other words, [anEmp describe] is performed. The sequence of evenis are as follows:
+ First, it must be realized that the application does not have a handle on the persistent
object directly. Instead, references to the persistent object are to its uniqua Proxy
instance. AnEmp is pointing to a Proxy, rather than to an Employee. Note that since

Proxies are objects, they all reference the same class object through their isa pointer. As

- |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

a result, it is possible to quickly determine whether or not an object is a Proxy by
examining its isa value.

« Message sends resutt in a call to the function _msg(). This routine checks if the object
being sent the message is a Proxy by checking its isa pointer. If it is a Proxy, the routine
_msglmpFind() is called immediately. If not, the regular messaging routine is continued
with. In this case, since anEmp is a Proxy, the former case holds. Note that
_msglmpFind() may be called to service messages to non-persistent objects as well.

« The first action done by _msglmpFind() is to check whether the object being sent the

message is a Proxy object. Recall that _msgimpFind() has the following definition:

(IMP)

_msglmpFind(refSelf, cls, selector)
id ‘refSelf;
SHARED ‘cls;
char *selector;

where refSelt is a pointer to the object (self) that was originally passed to _msg(). In this
case, ("refSelf) is anEmp, which is a Proxy object. If refSelf points to a Proxy object,
refSelf must be changed to the vaiue of the Proxy's realObject. If realObject is nil. then
the ObjectManager must be called to read the object from the database. The actual code

is as follows:

if ((*refSelf)->isa == _Proxylsa) {
if ((PROXY_TYPE®)(*refSelf))->realObject != nil)
(‘retSelf) = ((PROXY_TYPE®)("refSelf))->realObject:
else {
((PROXY_TYPE")("refSelf))->realObject =
[ObjectManager get: (“retSelf)];
(“refSelf) = (PROXY_TYPE")("refSelf))->realObject,

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

Note that refSelf is pointing to the location ¢f the message receiver on the program stack.
When the object pointed to by refSeif is altered, the receiver of the message has been
altered. In this case, the Employee object referred to by anEmp is already in memory. As
a result, the value of retSeif can be changed using one pointer manipulation. Access to
persistent objects which have already been read is theretore quite efficient.
The implementation of the "describe” method for the Employee ciass is found, and a
sointer to it is returned to the _msg() routine.
- _msg() takes the function address returned by _msglmpFind(), and branches directly to
that location. In this case, first the C library function printf is performed, and then the
message “describe” is sent to the Employee’s spouse. The message-passing routine
starts all over again. The process is identical to the one described above, with one
notable exception. At the time of the message send, the Employee’'s spouse has not yet _
been read into memory. As aresult, the ObjectManager is requested to do s0. The value
of the realObject instance variable of the spouse's Proxy is changed to point to the object
read. Note that since each database object may have only one Proxy object within an
application, this change is reflected by all other references to the spouse object, if any.
Palymoerphism and the Message Cache

The previous example may aiso be used to illustrate a subtle, but potentially dangerous
tacet of how messages to Proxies must be handled. Recall that the functions _msg() and
_msgSuper() share a cache of all of the recently accessed rnethods. This cache is implemented
as a hash table, whose key is the <ciass, selector> pair which uniquely identifies a methou.
When the method is not found in the cache, the _msgimpFind() routine is called, and the

function address returned by it is used to update the cache slot.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider what would happen if polymorphic behaviour was expected of objects

represented by Proxies, if the message cache was used as normal. Figure 6.3 illustrates the
point. Inthe previous example, the “"describe” message was sent to the Proxy objects
representing an Employee and a Person. The Employee's Proxy receives its message first. In
the _msg() function, the <class. selector> pair was <Proxy, “describe">. Assume that the cache
slot for that pair was empty, so the _msgimpFind() routine was called to look up the address of the
implementation. The function address returned by _msgimpFind() was the method which actually
matches the pair <Employee, "describe">. The address of that function was placed in the cache
slot, and the method was then executed.

The "describe" instance method implemented by the Employee class sends the
message "describe” to the spouse object v-iich, in this case, is expected to be a Person. Note
what would now happen in the _msg() function. Once again, _msg() is called with the <class,
selectors pair <Proxy, "describe">. This time, however, a match is found in the cache, and that
function is branched to. Unfortunately, the wrong function has just been called, since the
implementation of "describe” for the Employee class was found, rather than the implementation
for the Person class. Bizarre and dangerous results would result if this problem was not
addressed.

In Figure 6.3, then, we see the following:

» In stuation (A) - which is the normal Objective-C situation - we see that the two classes

Person and Employee each have their "describe” method placed in a separate slot in the

message cache.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+ Insituation (B) and (C), we have a more dangerous situation, since both thie Employee

and Person objects are, in fact, represented by Proxy objects. This confuses the normal

message-passing and caching mechanisms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1N 124

Figure 6.3: The Objective-C Message Cache

Objective-C Message Cache:

(A) [aPerson describe];

{anEmployee describe]; _2_Person(self, salector)

Class Selector
Person "describe"”

o
Employee | "describe” &\

‘_Q_Employee(self, selector)

(B) [aPerson describe];
Note that aPerson is actually a Proxy object.

The message "describe” has been sent to a Proxy representing a Person. The cache Is
updatad with the function address returned for the <Proxy, “describe”- pair.

Class Selector /—2—pers°"(seif' selector)
Proxy "describe” | @

_9 Employee(se!’, selector)

(C) [anEmployee describs];
Note that anEmployee is actually a Proxy object.

The message "describe” has baen sent 1o a Proxy represer n Employee. Since a
<Proxy, "describe™> pair is found in the cache, that funcu.n .s executed and an ertor
results.

Class Selector 2 _Person(seif, selector)

Proxy "describe” | @~

_9_Employee(sel!, selector)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

in order to handle to handle this problem, the _msg() function has been altered to identify
messages to Proxy objects. When such an occurrence is detected, the cache lookup code is
bypassed. Instead, the _msglmpFind() routine is called, and the control is turned over to the
function address it returns. The return value of _msgimpFind() is not used to update the cache,
as is the normal case. As a result, messages to ‘ordinary’ objects continue to utilize the message
cache, while messages to persistent objects always require a call to _msgimpFir.J() in order to find
the address of the specified method. This has performance repercussions, since the search
undertaken by _msgimpFind() may be proporticnal to the depth of the inheritance tree of the
receiver object. An ‘industrial strength’ implementation could maintain a separate cache for Proxy
object messages; or, alternatively, the <class, selector> pair used to hash into the cache could
be created using the class of the realObject pointed to by the Proxy object.
The Dangers of Violating Encapsulation

One of the features of the Objective-C language is that it ailows the violation of the
encapsulation principle inherent in the object-oriented paradigm. it is possible to get a handle on
the internal state of an object directly. A purist approach, such as the one taken in the Smalltalk
language, demands that all object manipulations be done using the operation provided by the
object itself. With respect tc the implementation of an object server for the language, this
approach is a double-edged sword. On one hand, being able to violate encapsulation was a great
help in implementing the class Proxy. Since it is impossible to send a message to a Proxy object
{all messages are passed along to the persistent object represented by the Proxy), the only way
for the object server implementation to modify or access Proxy objects was to do so directly.
Essentially, Proxy objects are treated by the object server implementation much like a regular C

structure.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

On the other hand, applications which insist on violating the encapsuiation of persistent
objects must be very careful, or disaster will resuit. Since references to persistent cbjects are
done so via Proxies, any attempt in the application code to point directly to the instance variables
of a persistent object must recognize the existence of Proxies, or it wili be using incorrect offsets.
Instead of pointing to an object of class Employee, for example, and offsetting to gain access to
the empNum variable, the program wouid be pointing to a Proxy object, and the same offset
would be pointing at the value of the 'realObject’ instance variable within the Proxy.

Typically, when an Objective-C program violates the encapsulation of an object, it does
so by casting the parameters of a method to be of the expected type. Figure 6.4 provides an
example code fragment which shows how a method which violates the encapsulation of an object
would have to deal with the Proxy interface. This code would have to replicated in every method
which attempted to deal with objects directly.

Figure 6.4: Dealing With Proxies Explicitly

@requires SomeClass, ObjectManager, Proxy;
typedef struct { @defs(Proxy) } PROXY_TYPE;
typedef struct { @defs(SomeClass) } SOME_TYPE;
/I The method casts it3 parameter to be an instance of a specific class.
-aMethod:(SOME_TYPE *)parm1 {
/1 First, check to see if the parameter is a Proxy object
if (parm1->isa == Proxy) {
// Has the object been read from the object base?
parm?t = (PROXY_TYPE *)parm1;
if (parm1->realObject == nil)
parmi = (SCME_TYPE *)parm1->realObject;
else { // Read the object into memory
parm1->realObject = {ObjectManager get: parm1],
parm1 = (SOME_TYPE *)parm1->realObject;
}

}
/* Thenp the method may centinue normally.... */

-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

7. The ObjectManager
Any application which wishes to use the object server must link the Objective-C class
ObjectManager. The ObjectManager provides the major components of the object server's
functionality. These include:
- Transterring objects from memory to disk, and vice versa. Inorder to do this, the
ObjectManager accesses metadata which describes the representation of objects.
« Caching objects which have been read from the database. The cache is maintained as a
hash table.
« A message protocol which allows the application to start and end ObjectManager

sessions.

7.1. The Object Schema

Before the inner workings of the ObjectManager can be described, the coricept of the
object schema must be explained. The object schema provides the 'data about the data’ - or
metadata - that the system requires to manipulate the persistent objects.

The format of the metadata required by the object server was largely motivated by the
format maintained by ZIM. Recall that a ZIM database schema is described [argely in terms of the
two entity sets: EntitySets and Fields. The object server schema is described largely in term of
two classes: Class and InstVar. How the object server metadata is used to maintain the ZIM

database schema is discussed at the end of the chapter.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Defining a Class

The object server must maintain information which allows it to describe both the ZIM and
Objective-C representation of an object. Since the ZIM DBMS maintains records which are
essentially C structures which have been written to disk, why are these representations ditferent?

» ZIM places a ‘'null’ byte before the beginning of each field in the record. This is used by

ZIM applications to store explicit null vaiues in the database. These null bytes must be
removed upon reading the object from the database, and inserted when the object is
written.

« Each instance in the object server must contain that object's OID. This value is kept in the
first field in the record which represents the object in the database. When the object is
read by an Objective-C application, this OID is used to find the object in the database
Once the object is read, the OID is maintained by the object's Proxy. Itis not contained in
the object itself.

+ Objects in Objective-C have, as their first instance variable, their isa pointer. Isa ponts to
the object's factory object. This pointer must be initialized when the object is read, and
removad when the object is written.

+ References to other objects are handled differently in the persistent and dynamic
representations of the object. In Qbjective-C, object references are via pointers of type
id. These require four bytes of memory. Persistent objects refer to each other via OIDs,

which require eight bytes of storage. When an object is read, its references to other

objects are represented by a Proxy insiance. When an object is written, its references to

other objects are represented by the OID stored within the Proxy

—
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

Recall that all objects are unique instances of some class. This means that the object
server must know the classes that it is expected to maintain, and their format. To do so, the class
Class is used. Instances of Class correspond one-to-one with the Objective-C classes for which
the toolset designer wishes to maintain persistent instances. The class Class is itself an
Obijective-C class which is known to the ObjectManager. As we shall see, it is an example of a

class which has several instance variables which are not persistent. It is defined as follows:

= Class : Object {

id name,
superClass,
instvars,
factoryQbiject,
subClasses,
dbSet,
getSel,
putSel;

short classNum;

}

Where the instance variables have the following meaning:
name - The String object which contains the name of the Class (ie. "Object").

superClass - The Class object which specifies the class's superclass.

instVars - The ordered collection of all of the instance variables which make up the class.
The specification of the class InstVar will be described below.

factoryObject- The location of the actual Objective-C factory object which is used to create new
instances of the class. The factoryObject is not a persistent object, since it is
only meaningful at run-time.

subClasses - The ordered collection of all of the class's subclasses.

dbSet - An instance of class DBSet, which is used to read and write instances of the
class to and from the underlying ZIM database. dbSet is not a persistent object,
since it is only meaningful at run-time.

getSel - The String object which represents the selector which is to be sent to the Class
instance in order to have an object of that class read from the database. This is
needed to handle the accessing of classes which are a special case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

putSel - The String object which represents the selector which is to be sent to the Class
instance in order to have an object of that class written to the database. This is
needed to handle the accessing of classcs which are a special case.

classNum - The ZIM file number of the database file which contains the class. All instances
of the persistent class are held in this file.

The class InstVar is crucial to understanding the object schema. Class objects use

InstVars to describe both the persistent and dynamic representation of their instances. The

implementation of InstVar is as tollows:

= InstVar : Object {
id name,
pantOfClass;
int type;
BOOL index,
persistent;
short length;

}

Where the instance variables have the following meaning:
name - The String object which contains the name of the InstVar (i¢. "name").
partOfClass - The instance of Class which this instVar is part of.

type An enumerated type which indicates the data type of the instance variable
(ie. "DB_ID", "DB_INT", “DB_DOUBLE?", ...).

index A Boolean variable which indicates whether or not this variable has a ZIM index
based on its value.

persistent A Boolean variables which indicates whether or not this variable is persistent.

For example, inthe class Class, dbSet would have a value of NO, while name
would have a value of YES.

length Used to indicate to ZIM how long a character array instance variable is.

Supporting Inheritance
The inheritance tree of an object class is described explicitly in the metadata through the

Class instance vanable superclass. At the root of the class hierarchy is the ciass Object, which has

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

a superclass of nil. Each Class maintains an ordered collection of the Classes which inherit from it.
Thus the superClass and subClass links define the inheritance hierarchy. An example inheritance
hierarchy implemented in this fashion is shown in Figure 7.1. Each Class object maintains an
ordered collection of its instance variables. It should be noted that the Class Object defines the
instance variable "oid". Since all objects inherit from Object, this ensures that all persistent
objects have this instance variable defined.

There is a message protocol to query a Class object about its instance variables, made up
of two messages:

= yourinstVars returns the instance variables specified for this class. It ignores any instance
variables defined in its superclasses. For example, the Person class object would
respond to this message with a collection containing the InstVar instances for “name"”
and "spouse”. The Employee Class object would return a coliection containing only the
InstVar instance for "empNum".

+ instVars returns all of the instance variabies defined for a class, including those detined in
its superclasses. It is implemented in terms of yourinstVars. The array of InstVars
returned has the superclass's instance variables first. For example, the Employee class
would respond with a collection containing the InstVar instances for "oid”, "name”,
"spouse”, and "empNum".

For example, the instVars message would be used to get the list of instance variables which fully

descrnbe an object when reading it from the object base. The yourinstVars message could be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—7132

Figure 7.1: Supporting Inheritance

Person : Object { // ZIM file 101

char name(30];
}
= Employee : Person { // ZIM file 102
int empNum;
id spouse;
}
® o
\
R —» oid o
®|102
N
femcesanas ' name
Employee

Q 105
\
]
\
]

dfmpNum ()
spouse | @

. superClass
R subClass

. partOfClass (for instance varables)

----- - instance variabie

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L E— L

used in constructing a browser for the object schema, where you would wish to deal with only the

instance variables defined in a particular class.

Metadata Access

The object schema is read from the object base by the ObjectManager in response to the
open message. There are several implementation details to note regarding how this is
performed:

» The code to read the object schema does not utilize the normal ObjectManager methods
for reading objects, since that code relies on the metadata. You ¢annot use the metadata
to read the metadata. Note that this does not imply that the object schema may not be
manipulated by applications which use the object server. An example of such an
application is the Browser described in the following chapter.

« The Class and InstVar instances which make up the object schema are not represented by
Proxy objects within the ObjectManager. 't has a direct handle on the persistent objects.
This is safe since the ObjectManager never modifies the metadata. The Class and InstvVar
instances which are read when the ObjectManager is opened are discarded when it is
closed. By allowing these objects to be handied directly by the ObjectManager,
performance gains are realized, since messages to non-Proxy objects use the message
cache,

+ The root of the inhentance hierarchy is the class Object. This object has one special

propenrty that is hard-wired into the system: it has an Object Identifier (OID) of zero (0)?!.

1 Actually, it has an OID of 0.0104, whara 104 is the classNum of the class Class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

This allows the ObjectManager initialization code to read in that object from the database

directly, and then read all ~f Object's subclasses recursively

7.2. An Objective-C Protocol for the ZIM PLI

The ZIM PLI provides a number of C functions which may be used to access, add,
change and delete records and index entries in ZIM database files!. Since all of the instances of
an class are maintained in the same ZIM database file, these operations are the equivalent to
adding, changing and deleting instances of classes.

Access to the database files is provided by two abstractions: the ZIM entity set (ZESET),
and the ZIM index (ZINDEX). A ZIM entity set is essentially a pointer to a C structure which
provides a reference to the contents of a ZIM database file. The pointer is returned by the PLI
function which opens afile, and it is passed as a parameter to all of the PL! functions which

manipulate the records in the file. The ZESET structure maintains a 'current record’, which is

essentially a pointer io a specific record in the file. This current record pointer may be moved
explicitly using a 'get next record’ function, or by using an index to locate a object which has a
specific value for an instance variable.

Once an entity set has been opened, any indices which exist may aiso be opened. A set
of PLI functions exists which will locate specific records in the file based on a specific value and a
Boolean operator (ie. <, <=, =, =>, > or !=). New records may be added, and existing ones
updated or deleted. Note that it is up to the program modifying the record values to update any
associated indices. Failure to perform these index updates correctly could result in the corruption

of the database.

1 Additianal PLI functions are provided to suppon session control, secunty, and concurrency contrcl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

There is one small but important detail regarding the ZIM PLI which must be made

explicit. When using the PLI, it is recommendec that the application open and close the entity

sets and indices very frequently. A typical sequence would be:

open entity set
open index1
open index2
locate a record using index1
modify the retrieved record
write the updated record
update index1
update index2
close index1
close index2
close entity set

It should be noted that closing the entity set has relatively little overhead associated with it. This is
because closing the entity set does nnt normally result in the closing of the underlying file. ZIM
maintains a ring of recently accessed entity sets, and a file is physically closed only if jecessary.
The number of open files allowed is a parameter which the user may controi. Closing entity sets
and indices does cause any modified buffers to be flushed back 1o the disk file.

A ZIM database file may be modelled effectively as a pointer to a ZESET structure, with an
associated collection of indices. The class DBSet performs this role. Instances of class DBSet are
created at run-time, ac the different classes in the object schema are requested to read, write or
modify their instances. The basic approach is that instances of DBSet are responsible for dealing
with accesses to the ZIM database. They retrieve, add, change and delete instances of classes
tn the database. However, it is the Class objects which are responsible for translating between
the persistent and dynamic representations of the objects. There is one DBSet instance for each

active Class. DBSet has the following structural definition:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

DBSet : Object {

ZESET *entitySet;
id indexes:
int mode.
status;
id class;
char butfer{ MAX_BUFFER_SIZE];
int buffLen;

}

Where the instance variables have the following meanings:

entitySet - A pointer to the ZIM entity set structure returned when the ZiM database .ile i1s
opened.
indexes - An ordered collection of the DBIndex instances for all of the indices for this file.
The class DBIndex is described below.

mode - When a ZIM database file is opened, its access mode must be specitied. The
two possible values here are read-only or update.

status - Indicates whether the ZIM database file is presently opened or closed.

class - The Class instance which owns this DBSet object.

butfer - The buffer into which records from the database are read.

buffLen - When writing a record, how many bytes are to be written. When reading a

record, how many bytes were read.
The "buffer” variable allocates a storage location through which all records pass when being read
or written.
The class DBIndex associates a ZINDEX structure pointer with the instance variable upon

which it is built. The structural detinition ot the class is as toilows:

R
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 7.2: Manipulating the ZIM Database from Objective-C

-

Ciass objects know how to read their instances from the object base. Interactions
with the database are handled through DBSets and DBIndexes, which provide an
Objective-C message protocol for dealing with ZIM PLI sets and indices.
Class
DBSet
Indexes
by
DBindex DBindex
L—————P ZIN Tiatabase Set Index #1 ingex #2
Current
Record
Pointer \
Buffer _
L |

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[o0

DBlindex : Object {

ZINDEX "index;

id ownerDBSet,
instvar,;

int keyType,
status,
indexNum,
keyLength,
keyDecimals;

Where the instance variables have the following meaning:
index - A pointer to the ZIM index structure which this DBIndex represents

ocwnerl3BSet - The DBSet object which owns this index.

instvar - The InstVar object which this index is built on.

keyType - Indicates which ZIM data type of the field on which the index i1s buit.
status - Indicates whether the ZIM index is presently opened or closed.
indexNum - The index number of the this index in the ZIM entity set. For example, the

first index defined on an eniily set would have an indexNum = 1

keylLength The length of the field on which this index is built. It has a value of zero for

numeric data types.

keyDecimals

The number of implied decimal places for a numeric data type.

Using this approach, a message protocol may then be implemented for the ZIM PLI
functions which allows the instances of a class to be retrieved, created and modified using a
DBSet object. DBSets are responsible for ensuring that whenever an operation is performed an a

pers..iant object, all of the indices are updated correctly as well

BESSSRRRERRRSAS—— -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3. Initialization: The Databbase Root Object

Applications which use the ObjectManager do so by linking the ObjectManager class into
the program. When the program is started, the class message open is sent to the
ObjectManager. This results in the following steps:

1) The ZIM database is opened. This requires a call to a ZIM PLI function.
2) Memory for the object cache is allocated. The object cache is described in detail in the
following section.
3) The object schema is read. The schema is the class hierarchy of all of the persistent
classes defined for this object base.
4) The database root object is read and its Proxy retumed to the application.
The database root object requires some description. All objects in the object base are reachabie
from this object It is presently implemented as an instance of an ordered collection with two
entries’ The tirst entry represents the root of the class hierarchy. The second entry is the root
object for the objects in the application domain. Every object stored in the object base by the
application is reachable from this root.

There are two constants defined to represent these entries in this root ordered collection.
They are SCHEMA and APPLICATION. Since most clients of the object server would be
interested in only the application objects, the protocol for opening the ObjectManager retui'rns
that object For example, for a program that was only interested in accessing the application data

couid use the toilowing piece of code to retrieve the highest-level application object:

roctObject = [ObjectManager open};

! There are no a prion restrictions on the type of the root object, so the toolset developer is free to place
any object thers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| 130

The application root object may be changed by sending the message applicationRoot: ! 10 the
ObjectManager. Changing the root object must be done with great zare, since it is possible to
inadvertently lose objects in the database if there is no path to them from the root.

As an example to illustrate the concept of a root object, recall the design of the ARTTisan

tooiset described in Chapter One. The toolset is implemented as a number of integrated tools
which manipulate designs which are represented as a hierarchy of notations. At the top level of
the design hierarchy was a System object. Every object in the design is reachable from this
System object. Given this, one can draw a number of ditferent toolset implementation scenarios
which would result in different objects at the root. In a single-user, one design per object base
environment, the application root would be the System object itself. In a single-user, multiple
design environment, the application root would be a collection of System objects. Thus the root
would be (for example) a Set, OrdCltn or Dictionary object. In a multi-user, muitiple design
environment, where each user owned a number of designs, the application root coulid be a
collection of some hypothetical User objects, each of which, in turn, referenced a collection of

designs owned by that user.

7.4. Records to Objects

Recall that objects are read from the database one at a time, as they receive messages
The algorithm for converting from an object's persistent and dynamic representation 1s
straightforward for most classes of objects. Simply allocate the memory tor the object and then

iterate throughn the instance variables of the object - whose type was described in the gbject

! Some examples or moditying the root objects:
(ObjectManager applicationReot: someObject],
[ObjectManager schemaRoct: someObject];
[ObjectManager root: somaeQOrdCitn];

:———_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

. 147

schema - copying the data from one representation to the other. There are only a few minor
1issues that must be addressed when implementing this approach:

« Allocating memory for an object in Objective-C typically involves sending the message
new 1o the class (factory) object of the desired type. When allocating the storage for a
persistent object being read from the database this approach will not work in general. This
is due to the fact that it is quite common to place initialization code in a class's new
method. However, reading an object from the database is not the same as creating a new
one. You are merely re-activating an existing object.

When a new object is created, the memory for it is allocated using the Objective-
C kernel function (*_alloc) In order to ensure that no initialization code is being invoked,
this function is called directly.

- The instance variables for an object include all of *hose defined by the object's
superclasses as well.

+ Instance variables which are not persistent must be skipped over.

- Numeric data types (such as short, long, int, double, etc.) must be aligned at an even
memory location in both the Objective-C and object server representations. This is a
result of the SUN's machine architecture.

+ ZIM aoes not support all of C's numeric data types. It is restricted to shont, long and
double. Appropriate type casting must be used to ensure that the data is in the correct
format in both representations.

« Instance vanables of type id - which represent reterences to other persistent objects -
are converted to Proxy objects when they are read and to OIDs when they are written.

Note that there is only one Proxy object per persistent object. When an object is being

- ___|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

Figure 7.3:, Reading an Object

In this example, the Employee object 9999.0102 is read from the object base. It contains a
reference to 777.0101. |If a Proxy object for 777.0101 already exists, it is found in the
object cache, and its location becomes the value of the Employee's spouse variabla. If a
Proxy does not already exist, one is created with an OID of 777.0101, it is added to the
cache, and then it is assigned to the spouse variable.

Person : Object { // ZIM file 101

char name(30];
}
= Employee : Person { // ZIM file 102
int empNum;
id spouse;
}
B Repr ntation

- ZIM ! null bytes

Emplovee
oid name empNum spouse
[9999.0102 BlFred ie4anitor Bl 123 Bl 777.010% |
Proxy Table EL?;%’ oid
777.0101 *— > @ [7770101 [.]
9999.0102 | @& |

—T~ i
\lsa

o

)) o 9999.0102
QObjective-C Representation L l 1L
® - |Indicates pointers to other objects.

The 1sa pointers are to the
Objective-C factory object for

that class.
_Emplovee
ica name empNum SEOUSB
’ | Fred le'Janitor Ji2a] ® |

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

read, and one of its instance variables 1s being assigned a Proxy, the Proxy cache in the
ObjectManager is checked to see if that has aiready been created. For example, (see
Figure 7.3) say an Employee object is being read whose spouse is represented by the
Object Identifier (OID) 777.0101. First the cache is checked to see if a Proxy with that OID
has already been created. If it has, the spouse instance variable of the Objective-C
representation of the object is assigned to the Proxy. If it has not, a new Proxy is created,
with its OID initialized to 777.0101, the Proay is added to the cache, and then the
spouse variable for the object is assigned to the new Proxy.
To illustrate what occurs when an object is read from the database, let us extend the example
described in Figure 6.2, where the "describe” message is sent to a Person object which has not
been read from the database. The sequence of events is as follows:
» The fact that the object has not yet been read in is detected in the _msgimpFind()

function. The message has been sent to a Proxy which has a realObject of nil. The code

in _msgimpFind() is:

if ((“retSelf)->isa == _Proxylsa) {
if ((PROXY_TYPE®)(‘refSelf))->realObject '= nil)
(‘refSelt) = (PROXY_TYPE")(*refSelf))->realObject;

else {
((PROXY_TYPE")("retSelf))->realObject =

[ObjectManager get: (‘retSeif)];
(*retSelf) = ({(PROXY_TYPE"){"refSelft))->reaiObject;

}

The ObjectManager is instructed to fetch the object represented by the Proxy from the

database. and retum it so that the Proxy's realObject instance variable may be modified

accordingly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

+ When the ObjectManager receives the get: message, it looks up the Class cbject in the
object schema for the class of object represented by the Proxy. Recall that OIDs contain
an indicator of the class of the object represented by the Proxy. The message

[proxyClass get: Proxy]
is then sent to the Class object. The key thing to note is that Classes are responsible for
| ing ! . heir | [| . '

« The Class instance method get. perferms the following: it ensures that the Objective-C

factory object for the class is available?; if an instance of DBSet has not yet been created

for the class, one is; the DBSet is opened; the class's “getSelector” is then performed 10
retrieve the object from the database; and the DBSet is closed. Recall that each class has
two instance variables named "getSelector" and "putSelector’. The methods named by
these two variables specify how instances of that class are to be read from the object
base. The default getSelector is named “readDB:", and it is this routine to which the
following description applies.

» The readDB: method takes the Proxy to be read as its parameter. it, intum, sends the
message

[dbSet get: aProxy]

to the DBSet associated with this class.

' This is equivalent to ansuring that the application has linked the class of the object which 1s to be read
from the object sarver. It is possible, for example, 1o have defined a class Person in the object schema
and then not link the Objective-C code for Person with the application A fatal error will result if this situation
occurs.

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1949

rﬂgure 7.4: Representing Persistent Objects
= Person : Object { // ZIM file 101
char name[30];}
= Employee : Person { // ZIM file 102
int empNum;
id spouse;}

Object Base Representation
4 - ZIM D/B null bytes Person

oid name

E W‘ﬂ? 0101 @ Molly le'Janitor]

(]

od name empNum spouse ,

& 99990102 F1Fred leJanitor ‘] 123 B 7770101]

] ¢+ . ’

[.. ' ’ :

.o * " [] '

’ " " ;‘;]

Proxy ' " . ! ,

Isa 3 § od . ' ! ,

. ! '

| ® L999901021 » ' \ / .
1 L] ¢

‘1 .. ! :

" ’ ’ 4

Employee L ' , :

is name \ empNum spouse ,

®]Fred le'Janitor Ji123 [& | ,

4 '
/

Proxy / , .'

’ i

ive- Representation A 's3 oid ‘

[@ | 777.0101 | o |

-~ -9 . Whera the instance variable
[}
value was taken from. / '
’

Indicates pointers to other objects. Person ’
’
name Y

o
The 1sa pointers are to the sa
Objective-C factory object for
that class. ® | Molly ledanitor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

146

« The DBSet object uses the OID provided by the Proxy to retneve the desired object from
the ZIM database file for the class. A pointer to the record retrieved from the database is
returned to the Class method readDB:.

» The instance variable values of the retrieved record are then used 1o create the Objective-
C representation of the object, as described at the beginning of the section Once the
object has been created, it is added to the object cache (described later in this chapter),
and then returned.

« Eventually, the newly-read object is retumed to _msglimpFind(), where it is assigned to

the realObject variable of the Proxy which originally received the message. The object I1s

used to modify the (*refSeif) value, and from there on, the Objective-C message-passing

routines operate as normal.
Figure 7.3 illustrates the persistent and dynamic representations of the objects invoived in this
example.
Other Object Representations and Their Access Methods

Unfortunately, the instances of all classes cannot be read using the same mechanism.
This is due to the fact that certain classes have representations which are non-standard, as
described in the previous chapter. In addition, the toolset developer may wish to define classes
which, for some reason, cannot be accessed in the normal fashion. Each ot these classes
require a different access method or the specification of an additional storage type, some also
required a specific storage model. The following sections describe these classes, their

representation in the ZIM database, and the access methods required to read thewr instances.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Custom-Defined Access Methods

Each Class object has “getSelector” and "putSelector” instance variables. The default
values for these two variables are "readDB:" and “writeDB:" respectively. These name instance
methods of the class Class which represent the standard method for reading and writing instances
of a class from the object base. They each expect a Proxy as their parameter. Failure to conformn
to this will probably result in disaster.

By placing the names of different methods in these slots, different Classes may
implement different access methods. For example, the following classes use the following

methods:

IdArray readDBIdArray:
writeDBIdArray:

String readString:
writeString:

User-Defined readByClass:

writeByClass:
These new access methods will be described in greater detail below.

Using these instance variables allows the tooiset developer, if he desires, to create new
access methods for classes which have some non-standard representation. To do so, he will
require some knowledge about the object server. The source code for the other access methods
1s available in the Class implementation to provide some guidelines.

In order to implement such a class, the Class object should have a "getSelector” of
"readByClass ™" and a "putSelector” of "writeByClass:". These two methods have the following

implementation:

-readByClass: aProxy {
[tactoryObiject readinstance: aProxy for- self];
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

-writeByClass: aProxy |
[factoryObject writelnstance: aProxy for: seif};

Note that each of these expect a Proxy as a parameter. In addition, the developur must
write the access method code as well, in the Objective-C code which impiements the class. The

«Ccess method code must be implemented in terms of two class methods, which must have the

following definitiony:

+readinstance: aProxy for: aClass
+writelnstance: aProxy for: aClass

The "readinstance:fui:* method must return the Proxy passed to it, with its realObject instance
variab.e assigned to the object read from the database. The "wrtelnstance for:* method must
return nil. The "aClass” parameter passed to both of these methods s the Class object in the
object schema for the class being accessed.
IdArray

Recall that the class IdArray implements a class where the objects referred to are
accessed as indexed array elements, rather than as named instance variables!. All of the
examples discussed thus far have stated that all instances of a class are conta:ned within one ZIM
database file. This is not the case for instances of IdArray, which require two files to fully describe
their instances. Figure 7.5 illustrates the point. It shows an IdArray in its Objective-C

representation and its format in the database. The points to note aie: the named instance

1 This 1s described fully in Section 6.1.

e ————————————

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vanable capacity is placed in one file, and the indexable portion of the object are in the second. In

the second file, each non-nil array element and its lcation in the array are written.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[— 150

Figure 7.5: Representing IdArrays

ive- r ion
® - |Indicates pointers to other objects.
The isa pointers are to the

Objective-C factory object for
that class.

In this exampie. the following lines of code have been used to create an instance of IdArray.
myArray = [IdArray new: 3],
[myArray at: 1 put: anObjecti];
[myArray at: 3 put: anObject2];
The two objects inserted into the array are, in fact, Proxies representing persistant
objects stored in the object base.

IdArray
isa capacity [1] [2] (3]

e |3 [»® |- |

Proxy Proxy
Isa oid Isa oid
| @ | 9999.0102 | - | ® | 7770101 | - |

Object Base Representation
- ZIM D/B null bytes

When the IdArray i1s written to the object base, the indexed portion of tha array s wnitten
to a separate file. Only the non-n:l entries are writters, along with their location in tha array

oid capacity od at id
192830117 B] 3 | [192830117 F] 1 [9999.0102
19283.01t7 }] 3 |4 777 0101

———————

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

Recall that each Class has the instance variables "getSelector’ and "putSelector® which
take a Proxy as a parameter and return the specified object from the database. In order to read an
instance of IdArray, the Class object for IdArray uses tne methed "readDBlidArray:”; to write an
instance of !dArray, the method "writeDBIdArray:” is used.

Since IdArray has a specialized access method, it cannot be sub-classed in the object
server.

Collections

The class Citn and its subclasses such as Set, Bag, OrdCitn and Stack all use an instance
of IdArray to contain their elements. However, since the code that .mplements these data
abstractions routinely violate the encapsulation of this array, it is not possible to use a Proxy to
refer to it. When a collcction is read from the database, the IdArray which contains the contents
must be created and its memory location given explicitly to the collection using it. The coliection
object itself, of course, is referred to via a Proxy object.

Since the collection classes specify additional named instarice variables, and their
contents are implemented as ar IdArray, their instances are spread over three ZIM database f.ies.

The manner in which collection classes read their contents is of special note. Each of the
collection classes keep the IdArray which contains their references in a named instance variable
called 'contents’. [n order to eliow the collection classes to be sub-classed, this instance variable
has a specific data type, called DB_CLTN. Essentially, the DB_CLTN type indicates to the Class
that this instance vanable contains an [dArray. When an instance varniaole of this type is read from
or wntten to the object base, it is treated as such.

The advantage to this approach is that it aliows Collection classes tc be sub-classed.

When a specific access method is written, as was the case with IdArray, that class Zan only be

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

specialized if the subclass does not add any instance variables. A subclass may be specified

which modifies the behaviour, but not the structure of the class. When a new type is introduced,

it is the type of the instance variable which specifies how it is accessed, rather than some specific

piece of code.
string

Instances of the class String are similar to IdArrays in that they maintain a memory area
which is indexed into rather than being represented by named instance varnables. In this case,
however, the contents are composed of a null-terminated C string.

The access method implemented for the String class takes advantage of the ZIM
“varchar" data type described in the previous chapter. This data type will store a variable-length

array of characters in the following structure:

{

short length;

char contents[x];

}
where x is the maximum length of the field, as specified in the database schema entry. When the
record is actually written to the database, the field is compacted to the length specified in the
structure. When the record ie read from the database, the character array is padded with spaces

(not nulls) to its maximum length. The access code then strips the trailing spaces and uses the

res aung C string to create an instance of String.

.
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In order to utilize this access method, the String Cle s object has a "getSelector” of

"readString:" and a "putSelector” of "writeString:".

1563

Figure 7.6: Representing Strings
ive- r ion
In this example, the fcllowing has been used to create an instance of String.

myString = [String str: "Fred le'Janitor"];
Note that the contents of the String object is a C null-terminated string.

isa
| ® [Fred le'yanitor]

Base Representation

F] - zM D/8 nuil bytes

When the String 1s wntten to the object base, the contents of the cobject is placed
in a ZIM variable-length character fieid. Only the specified number of characters
are written to the database.

oid length contents
Fl 192830117 | 15 [Fred le'anitor]

7.5. Writing Objects to the Object Base

Recall that the object base is essentially one large complex object. Every itemin the

database 1s reachable from the database root object. Applications which use the object base do

so by navigating through the directed graph of objects which is of interest to the user. This

navigation is performed by sending messages to the objects which are to be manipulated by the

toolset. Of course. these messages are actually being sent to Proxy objects, and the database

reads are therefore entirely transparent to the application. Writing objects back to the object base,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

however, is performed explicitly. The application code must send the "save:" message to the
ObjectManager. For example, the following statement would save every object read since the
ObjectManager was openad back to the object base:

[ObjectManager save: rootObject];!
where rootObject was the object returned when the ObjectManager was opened.

When an object is saved, every object reachable from that object is saved at the same
time. The directed, cyclical graph of objects reachable from the root object is saved at the same
time. The steps involved with performing this are straightforwarg.

» Given a root object, create a collection of every object of a persistent class reachable from
that root. The collection is composed entirely of Proxy objects. The ¢raph of objects to
be saved is created by the ProxyGraph class method "over:". For example, the message

[ProxyGraph over: anObject];

will return an idArray which contains the Proxy of every persistent object reachable from

anObject.

« In order to handle cycles, the graph walk procedure uses the "beenHere" instance
variable of the Proxies. Whenever an object is added to the collection, its Proxy's
"beenHere" variable is assigned YES. If this Proxy is encountered iater in the graph
traversal, it is ignored.

» The graph walk procedure uses the object schema data to access the contents of the

objects. For objects with named instance vanables, the algonthm iterates through each

1 There is also a "saveContentsOf:" massage v hich will save evary object reachable from the contents of
some collection, but which does not save the co.laction object itself. For example, if empSet is a Set oi
Employees, the following will save the set:

[ObjectManager saveContentsOf: empSet],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

of the variables. For instances of IdArray, the algorithm iterates through each element in
the array. One key thing to note is that the traversal stops whenever it encounters an
instance vanable which has been defined to be not persistent or is not of a persistent
class.

» Iterate through the array of Proxy objects, saving each one in turn to the object base.
This process relies on the fact that each Class knows how to write its instances to the
object base. Each Proxy is sent to its class as a parameter to a "store:" message; the
method which implements "stare:” then uses the Class's "putSelector” to write the object
to the database. The process is optimized by opening the underlying ZIM database file
for each class only once, and then closing all of the files after the objects have been
written. As each object is written, its "beenHere" variab.e is reset to NO.

» Free the IdArray instance which contained the graph of Proxies.

7.6. The Proxy Table

When the ObjectManager is opened, it returns a Proxy for the database root object.
Every Proxy created afterwards is the result of an object being read whick: refers to a second
object. These reads occur whenever a message is sent to a Proxy cbject which has a realObject
cf nil For example, in Figure 7.3 the Proxy for the Person object with an OID of 777.0101 was
created when the Employee object with an OID of 3999.0102 was read. Whenever a persistent
variable of type id is encountered when an object is read, the Proxy for the referenced object is
placed in the correct offset in the object being read. However, it is critical that there is only ever
one Proxy for each persistent object, so that all references to the persistent object remain

consistent To ensure that this is the case, the ObjectManager maintains a proxy table, which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

maps the oid of the persistent object to the location of the Proxy in memory. Whenever an object
reference is encountered when reading an object, the following events occur:

« If the OID of the instance variable is 0.0, then the variable is assigned nil. When writing an
object, any nil references are assigned 0.0.

« If a Proxy al-eady exists for that OID, itis found in the proxy table by the ObjectManager
and the variabie is assigned to it. Note that this ensures that all references to the same
persistent object are via the same Proxy object. Also, if the object had already been read,
then this is reflected by the realObject value of this unique Proxy.

- If no Proxy exists for that OID, a new one is created. Its oid value is assigned to the OID of
the object being referred to, and its realObject value is intialized to nil. This new Proxy I1s
then added to the proxy table kept by the ObjectManager. This table is used by the
ObjectManager to ensure that any subsequent references to the same object are

resolved using the same Proxy instance.

e |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

Figure 7.7: The Proxy Table

Every reference between persistent objects is handled via a Proxy object. The ObjectManager
maintains a table of these Proxies ordered by their oid. Whenever a persistent object is being
read from the object base, the inter-object references are resolved using this table.

Note also that the root object is actually nothing other than a pointer to a Proxy.

Proxy
Root Object isa oid

[(e—} n ® | 99990102] @ |

Proxy Tabie
3999.0102 [_ mplovee
- isa name empNum Spouse
o Fred le'Janitor 123
777.0101 ®] 1 | ,T)
Proxy

isa oid

— B[e [7770100 | -]

The proxy table is impiemented as an instance of class HashTable which, inturn, uses the class
Set to maintain its elements. This extra level of abstraction is required since Sets send messages
10 their elements ang it is IMmpossible for a Proxy object 10 receive a message. Even more
importantly, any messages received by a Proxy object will result in the object that it represents
being read from the object base. If the proxy table inadvertently sent messages to its elements, 1t
would quickly result in the entire database being read into memory. However, the key for the
cache elements must ue the oid of the Proxy objects, since that is how they are retrieved by the

CbjectManager.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

7.8. A Browser for the Schema

In order to maintain the object server's metadata, a browser for the class hierarchy has
been proviced. The browser essentially provides a user interface for the definition of the classes
whose instances are to be maintained by the object server. It provides the ability to create and
destroy instances of the classes Class and InstVar.

The browser is of interest for two reasons: first, it provides a tool to inspect and modity
the class hierarchy used by the object server; and second, it serves as an example application in
the use of the object server itself. The browser is written in Objective-C, and demonstrates that

the goal of transparency has been fulfilled.

Figure 7.8: The Class Browser

} Class Browsers:

g Object

Array
IdArray

Citn

OrdClin

name Ya

type nt

persistent?. YES
length 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

Figure 7.8 illustrates the format of the browser window. It is implemented as a SunView
window with three panes. The first pane (top left) shows the class hierarchy. The inheritance tree
of the classes defined to the system is indicated by the indentations. For example, class Array
inhernts from Object, and class /dArray inherits from Array. The second pane lists the instance
variables for the selected class. In the example shown, the class Point has been selected, and
its instance variables x and y are listed in the pane. The third pane allows the user to specify the
name, type, and length of the selected instance variable. In addition, the user can specify
whether or not the individual instance variable is persistent. Non-persistent instance variables are
not store 1 the object base, and are initialized to nil when the object is read.

At present, classes may be only added and deleted using the browser. New classes are
added to the class hierarchy by selecting a class and then choosing 'add subciass' from the pop-
up menu. Instance variables for a class are added by selecting a class and then choosing ‘add
instance variable' from the pop-up menu. Classes are deleted by selecting a class and then
choosing 'delete class' from the pop-up menu. Changes to classes are a tricky problem, since
modifying the underlying data to reflect changes in the class specification is a non-trivial task.
While the functionality of the present implementation is rudimentary, it provides a good
demonstration of what a browser for the object server schema should Icok like.

In order to cause a change in the underlying ZIM database schema, the browser must
communicate the desired additions and deletions to the ZIM environment. Recall that the ZIM
schema s largely described by two entity sets, Ents and Fields. The relationship between Class
and Ents should be obvious. When a class is added or deleted, a corresponding entry in Ents is
created or destroyed. Similarly, when a instance variable is created or destroyed, that change

must be reflected in the comesponding entry in the Fields entity. Since ZIM's schema information

1 1 "
1 [T u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

may be accessed through the PLI, these changes can be made in a straightforward manner.
Unfortunately, changing the schema information alone does not cause an entity to be created or

destroyed by ZIM. The metadata must be acted upon by the ZIM system in order to have the

necessary database files acted upon. For example, once an entity set has been defined in the
Ents and Fields entity sets, the ZIM command create must be issued to actually create the
necessary ZIM database file.

In order to have the additions and deletions to the class hierarchy reflected in the
underlying ZIM database, the following approach is used:

= The browser is actually called from inside ZIM. The ZIM environment is entered from UNIX,
and then the command

system ‘dbBrowser’
is issued.

+ AZIM enti-ty set known as ModitiedCiasses has been defined. The entity has two tields,
namely className and actionCode. ClassName refers to the name of the class being
manipulated by the browser. ActionCode is either ‘A’ tor add, or 'D’ for delete.

+ Inside the browser, whenever a class is added its name is added to Ents, and its instance
variables (including those defined by its superclasses) are added to Fields. Finally, a
record is added to ModifiedClasses indicating that a class has been added. When a class
is deleted, a record is added to ModifiedClasses indicating this as well

» When the user quits the browser, control is returned to the 2IM environment. ZIM checks

the ModifiedClasses to see if there are any records. If so, the changes are acted upon

7.9. Using the Object Server

In order to use the object server, the application developer should foliow these steps:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

1) Write the application in Objective-C, just as usual. The only constraint is *hat the
encapsulation of the objects shouid be respected if the persistent objects are to be
treated completely transparently. If, for performance reasons, encapsulation must be
violated, the Proxy objects must be recognized and dealt with explicitly. A method which
violates the encapsulation of its parameter(s) would have to recognize that they could be
Proxies instead of whatever class of object is normally expected, as discussed in Chapter
Six. For an example of the necessary code, refer to Figure 6.4.

2) After the system is working without persistent objects, the next step is to integrate the
object server with the application. In order to do this, *he developer must first identify
which classes are to have persistent instances. Next, the developer must decide which
instance variables are to be persistent within thase classes. After these decisions are
made, the browser may be used to add the classes to the object server. In order to create
a new object server for this particular application, copy all of the files in the directory
"/usr/sinus/milink/zim3.0/caseDB/basic” into a new directory. To open a browser on the
object server's schema, enter "dbBrowser® from UNIX.

3) Once the classes have been defined to the object server, the last step involves linking
the ObjectManager and modifying the application's source code to open and close the
object server. Typically, these changes would be isolated to the main() function of the

application. For an example of the code fragments required, see Figure 7.9. The

roctObyect returned to the ap Hlication by the open message is the root of the application
object=s in the object server. If the system wants to deal with the schema objects, it

shouid send the message schemaRoot to the ObjectManager.

[| 1 1 | it ' " ! [’ | [|

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

Fiqure 7.9: Using the Object Server

@requires ObjectManager:;
main() {
id rootObject;
rootObject = [ObjectManager open];

r* Insert application code here */

[ObjectManager save: rootQbject};
[ObjectManager closel;

1
Vo [[T T T B A I (-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8. Conclusions

8.1. Meeting the Goals
The primary goals of this work were to support the following:
+ To provide a persistent object store for the ART Tisan toolset.
« To integrate the object server with the Objective-C language.
« To evaluate the effectiveness of the object-oriented approach as an implementation
vehicle for CASE environments.
Viewed from the vantage points described above, the present impliementation of the object
server is a success, since the goals were accomplished. However, athesis is a learming nrocess,
and there are a number of improvements which could be made to iihe design and implementation
of the object server. These extensions to the work are described in the next section, entitled
Future Reseaich.
Persistent Objects
The number or2 goal of this research was, of course, to provide a working persistent
object store for the ARTTisan toolset. This goal has been met. The system described in this work
provides for the persistent storage and retrieval of the objects manipuiated by the toolset.
Under'ying this goal, of course, is the requirement that the object server provide satisfactory
performance. Performance here can be broadly measured in terms of two parameters: the time
required 1o read the objects from the object server, and the time required to save the objects
back to the object base. While the object server has not yet been used with the entire toolset,

the following observations have been made:

-
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

+ Reading in individual objects seems to provide adequate performance. The tooiset may
be viewed as a graphical editor for the persistent objects stored by the server Objects
are typicai'y read when the user pertrorms some acticn that specifies that a particular object
is of interest. For example, the user may click a mouse button while pointing to a
graphical representation of an object. The response to read a typical diagram from the
datavo-:is (suljectively at least) acceptable. The time lag to read such a diagram is
typically one to two seconds.

+ Writing out collections of objects admittedly takes some time. After running some time
trials, a mean time of 2.5 minutes to save 3000 new object: to the object base® is noted
While not unacceptably siow, this time is not blindingly fast either. To a large degree,
there is a trade-off being made between retrieval time and storage time for the persistent
objects. When an object is being written to the database, the ZIM index associated witi,
the object's OID must be updated. This takes some added time, over and above the time
required to write the object to the server. However, the indices provide improved
performance when reading the objects from the server, since indexed retrieval is faster.

In order to support persistent objects, ati object-oriented data model was used. The model
supports the notions of object identity, an extensible type system and inhentance. Complex
objects and aggregate objects are supported as well. One uncommon teature of the data mode'
is that ir.dividual instance vanables of gersistent classes may be declared as unpersistent. These

instance variables are not saved to the object base, and are initialized to nils when they are read

This feature was motivated by the application: there are classes for which *his approach is

required.

[
n | [1
[[e [| | n | oot !

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of/de

R =

= 32
= I
I

. =

L

125 jie pue

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

The object server implementation illustrates the utility of using a commercially available
database as the back-end for the system. Using the ZIM PLI resulted in a number of advantages,
including:

+ Since the ZiM PLI took care of indexing, storage. retrieval, physical file access, and
database consistency, there was less coding to perform, and the resulting tool contains
fewer errors as a result.

- The ZIM PLI offered low-level access to the data. The object server would have been
difficult, if not impossible, to impiement using an embedded database language. This is

because of the added consistency checks and compile-time type checking implicit in the

use of such tools.
» ZIM offers portability as an avenue for future enhancements to the system. It s presently
available on a large number of different hardware platforms and operating systems The
PL! is also available on these platforms. As a result, porting the object server to different
environments should be greatly simplified.
« The ZIM PLI also offered access to the database schema data. This allowed the creation
of routines which modified the system’'s metadata.
The present object server implementation could be improved with respect to its use of the PLI
The primary drawback of the current approach results from the design decision to place ail
instances of a class in a separate Z!M database file This approach was moiivated by the belief that
it was more efficient and that it offeied the ability to use the ZIM query language to examine the
contents of the object base. Separating the object store .nto separate files poses a number of

constraints:

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

- It prohibits the clustering of objects on disk based on expected usage patterns. Instead,
objects are clustered based on their class, a strategy which yields few benefits in an
application which is graph-oriented and where there is no query language to be
supported.

« Maintaining consistency between the obiect server's metadata and ZIM's schema was
found to be a problem. It is certainly not impossible to maintain such consistency, but it
requires a lot of code to check, and is a constant source of errors.

- Because of the operating system limit on the number of files opened by an application,
spreading the object repository over a group of files occasionally caused errors as well.
The problem is certainly not difficult to fix through the use of ZIM configuration
parameters, but it is ancther variable to concemn yourself with.

An alternative object server implementation, which uses a minimum number of ZIM database files
1s described under Future Research.
Integration With Objective-C
The second major goal of this research was to proviae a persistent object service which
was essentially transparenti to the toolset code. This requires that persistent objects be treated in
an identical tashion to dynamic objects. The toolset code should not be required to test whether
an object is on disk or in memory, persistent objects should be syntactically identical to dynamic
ones; and persistent objects should not be required to be a subclass of some special class.
These goals have been met by the current object server implementation through the use
of the Proxy interface. The illusion of the one-levei store is fully supported - the application code
does not know, or care, if an object has been read into memory. In addition, since the

messaging kernel of the Objective-C language has been modified to identity messages to Proxy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

obiects, this interface provides good performance!. There Is relatively little overhead in sending
a message to a persistent object, once it has been read into memory.

Persistent objects are also fully consistent with dynamic Objective-C objects. This means.
for example, that the object server does not use a different type system than the Objective-C
language. In addition, the object server provides support for a large subset of the C primitive
types and most of the Objective-C Feundation Classes. Those that were not implemented could
be added easily to the system. They are not provided at the present time s:imply because they
were not used by the toolset code, so there was little motivation to implement them. The
exception tn this is that there is no support for the storage of arbitrary C structures and unions.
Again, however, the present toolset implementation does not require the persistent storage of
these types. Typically, any references to a C structure are not persistent, and this is handled by
the object server by specifying that the instance variable in question is not persistent
Effectiveness of the Object-Oriented Approach

The Objective-C language, and the object-oriented aprroach that it entails has been the
implementation vehicle for the ARTTisan toolset. While there has certainly been a leaming curve
involved with adopting this methodology, it has been, on baiance, a success. The object-
ornienied approach offers a number of key advantages for implementing a CASE environment It is
an effective approach tor the modeling of complex data types, such as the directed graphs which
form a large part of the application. Its emphasis on encapsulation and modularity provides for
increased reliability, minimized code builk and increased code re-use. Its major drawback 1s the

lack of a generally accepted and coherent design methodology. Object-onented design is stll

' Note, however, that no changes were required to the Objective-C compiler.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

very much a hit-and-miss affair. It seems that there is really no substitute for the subjective
application of a designer's experience at the present time.

The Objective-C language itseilf has a number of advantages and disadvantages. Iits
strong points include: a fairly consist implementation of the object-oriented paradigm, closely
modeled after the Smalltalk model; a reasonably extensive iibrary of classes; the ability to link to
different packages; the ability to violate the encapsulation of an object at the programmer's
discretion; and reasonably fast execution speeds. Its major disadvantages include: the ability to
violate the encapsulation of an object at the programmer's discretion!, and the Foundation class
implementations which do so as the rule, rather than the exception; the iack of a cohesive
development environment, such as Smalltalk's; and the lack of a reasonabie memory

management scheme.

8.2. Future Research

Object-oriented databases, object servers and database programming languages based
on the object-oriented paradigm are all currently active areas of research. As such, this work
represents but a first step. There are numerous extensions to, or additional avenues suggested
by this research. The following sections cover a number of possible research areas which could
follow this work.
Miscellaneous

The foliowing descrnibes a number of improvements which could be made to bring the

system from a 'proof of concept’ to a more complete and robust state. These enhancements

' The inclusion of ‘vioiating encapsulation’ as both a strength and weakness of Objective-C was

intantional This 1s a double-edged sword which, If used without discretion, will negate many of the benefits
ot using an object-oriented language. That said, howevar, access to the internals of objects made the
implemantation of tha object server simpler and mnre efficient.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

represent incremental improvements to the existing implementation, rather than the major
changes described in later sections. They include:

* Improved consistency checking between the object server and the language. This could
include the creation of a automatic schema transiator to generate Objective-C class
definitions from the object server schema. Translating from the Objective-C detfinition to a
schema representation is not feasible, since the schema requires more information than
is available. For example, each instance variables must be defined to be either persistent

or unpersistent.

* Improved consistency checking between the object server and Z!M. Primarily, this implies
the ability to handle class modifications. When a persistent class is modified, two things
must occur: the class definition must be changed in Objective-C, in the object server,
and in ZIM, and any existing instances of the class must be modified to reflect the new
definition.

» Garbage collection of the persistent objects must be provided. This is necessary since
there is no way, at present, to physically deiete an instance of a persistent class from the
object base!. Itis, however, possible to logically delete an object by de-referencing it. A
simple mark-and-sweep garbage collection algorithm could be implemented, using the

database root object as a starting point.

' It could be possible, however, to modify the behaviour of the free message to delete 'nstances from the
object bass.

—————— |
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

Multi-User Issues

One of the most important extensions for this work is in the area of mufti-user access to
the persistent data. Before presenting a strategy to solve this problem. let us describe the issues
involved in extending the object server to support multi-user access to the toolset.

in typical database applications, transactions typically have a duration of a few seconds or
less In a software design environment, however, transactions may last hours, or even days. For
example, a typicai software design transaction for a user of the ARTT toolset woulid consist of the
following steps:

- The user iogs on and starts up the toolset.

- He then selects the system that he wishes to work on from the set of system icons on the
desk top. He then enters the top-level design tool. Note that several users may want to
work on the same system concurrently. However, it should be possible to lock specific
system components for the exclusive use of a single toolset user. These locks may have
a duration of days.

+ Once he enters the system, he adds, changes, deletes and browses the various objects
that make up the design. These actions may result in additional tools being activated.

+ At any point in time, the user may wish to save his changes back to the object base. He
may wish tou save his work either because some logical point in the design process has
been reached or merely to protect himself against the possibility of the workstation or
network going down. Note that saving a work-in-process is not the same as committing a
design to the object base.

+ Periodically, he will terminate a session, typ.w illy after saving his work once again.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

« At some point, a commit is issued and the design is identified as once again being in a
consistent state and available to others for use.

This scenanc implies a number of important points regarding the nature ot software design
transactions.

Duratlon: Design transactions may last a long time, typically several hours or days
Therefore, the traditional solutions for controlling multi-user access of queuing users
making competing requests for database access will not work. Obviously, queuing a user
for an extended period while someone else is manipulating the desired object is not a
viable mechanism for providing concurrency control.

Consistency: The overall consistency of the data committed to the database durnng a
transaction cannot be checked by the DBMS; designs can and must be saveable in an
intermediate (and hence, inconsistent) state. As long as the data 1s consistent at the
individual object level, it can be wrnitten. The consistency of complex objects i1s the
responsibitity of the tools themselves. This is quite ditferent from traditional database
applications, where orly completed, and presumably consistent transactions are written
to the database.

Note, that to a large degree, intermediate states must be saved to the object
base because of the long duration of software design transactions. The tool users will
want to save intermediate states of their design to protect themselves from workstation ot
network failure.

Volume: Software design transactions touch {or have the potental to touch) large

volumes of data of many ditferent types. However, designers do not necessanly want

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

write access to all of the data that they wist to see. Often, much of the data that they
access is to browse other portions of the system under design.
Locking: Unlike traditional database transactions, the inability to lock an object should not
imply the failure of the entire transaction. Hours of work could be lost, if this approach was
followed However, the user should be informed that he cannot access a certain object
because someone else has already accessed it.
Performance: The duration and volume of data accessed by software design
transactions makes the caching of objects a requirement for performance reasons.
Reading objects from the database every time they are accessed by the tools would be
too expensive In terms of disk /O and network traffic. However, the object manager must
know which objects have been cached in order to ensure that the different users are not
manipulating the same object.
n addition, the implementation of the object server presented in this thesis has an impact on the
nature of the design transactions, as they would be supported by ARTTisan. Data is read from
the object base implicitly. while they are written explicitly. Objects are tetched from the object
base as the toolset references tt-em by sending a message to them. Objects are written,
however, when a complex object is explicitly sent to the object manager for saving.

As a result, reading a complex object can be a very long operation, since it may involve
many small reads as the object components are read on an 'as needeg' basis. Write operations,
on the other hand, would typicaily be of a shorter duration, with a {potentially) large number of

objects being stored at one time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

The G larity of Obiect A . Defining C ite Obj

In the present implementation, individual objects are read from the object base as they
1eceive messages. While this works reasonably well, there are a number of factors which motivate
extending this approach:

1) Often, the toolset developer will know that a certain group of objects would be accessed
tcgether. For example, recall that the toolset objects are represented by a ‘tool object,
which references a ‘logical’ object and a ‘graphical’ object. Thus relationship is shown in
Figure 9.1. In virtually all cases, when the tool object is read, the graphical object
associated with it would be read soon after. This is due to the fact that usually if a tool
component object is accessed, it will be shown to the user by the toolset It wouid be
useful to anticipa‘e ttis, and read the two objects as a unit. There should be a
mechanism to specify a larger unit than individual instances as the unit which 1s to be read

‘~>m the object base. This unit is referred to here as a ‘composite object’

Figure B.1 Representing ARTTIsan Objects

[Tool
Component l

Logical Graphical
Object Object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

2) For the purposes of multi-user access to the object base, the reading and caching of
single instances of objectc presents a oroblem. Since objects are read one at a time, and
the reads are essentially event-driven, it may take a long time to read in those portions of
a large, complex object that the user wishes to access. |nthe meantime, another user
could be following another path through the object base to the same complex object. At
some point, a collision will occur, and one user will iock an object that the other is
interested in The problem is that, since the unit of access is single objects, there is no
reasonable place to test to see if a object is already locked, without testing every single
object in the code What is needed is some way 1o identify larger groups of objects which
may be locked as a unit, and have the toolset code test to see of they are locked before
they are accessed. For example, it wouid be an onerous task to write code which
explicitly locks individual instances of class Point, but it would make sense to expiicitly
lock an entire state machine diagram when it is read by the toolset.

3) As an extension (or even an alternative) to locking composite objects, they could also
be the unit of versioning in the object base. Maintaining a sequence of versions of the
major components of scftware designs has long been recognized as an important feature
offered by CASE environments. The definition of the units which the application wishes
to version is a key facet of providing such support. A second interesting point regarding
versioning 1s that it has been suggested as a mechanism for providing concurrency
control The basic idea is to create new versions of objects when they are written to the
object base. rather than changing them in place. Since objects are never changed, only

added, concurrent access to them s greatly simpilified.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

The challenge then, is to define a mechanism which will allow the toolset developer to specity
‘composite’ objects which may then be read and cached as a single unit, and which will also act as
the unit which individual users may lock and/or version. The present data model supports the
notion of complex objects as large networks of inter-related objects, where the relationships are
based on the idantity 2f the objects involved. At the fimit, the entire database is reachabie from
the root object, and thus may be viewed as a single, if huge, complex object Composite objects
may be viewed as providing the ability to define objects whose granulanty fall between these two
extremes.

Once a mechanism has beaen provided whereby the object server users may specify

complex objects which may read as a umit, the next step wouid be to store these inter-related

objects together in order to improve performance. Disk search times are one of the major
hmitations on database retrieval, and clustering related objects physically tcgether i1s one
approach which has been suggested for improving performance (Hornick and Zdonik, 1987)
{(Banerjee, et al, 1987).
Making Objective-C a vatabase Programming Language

One of the most interesting avenues of programming language research has been in the
area of database programming tanguages. Researchers in this field view the separation of
databases and programming languages to be ariificial Instead, they propose the inclusion of
persistence and multi-user access to shared data (two of the major roles of database) in general-
purpose pregramming languages. Thus approach 1s in stark contrast to the database/programming
language dichotomy which is the norm today. For example, to use the latest in reiational DBMS
technology - the SQL query language standard - the applications developer must wnte the

control logic in a third generation language, and restrict his use of the database for fetching and

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

storing refational tuples Complex objects are not supported: they must be constructed by the
selects, projects and joins contained in the application programs.

An interesting extension to the research presented in this thesis would be to extend the
object server implementation to the development of Objective-C as a database programming
language Under this approach, all objects would be at least capabie of being wntten to a
persistent store’; however, which objects are actually saved would be under program control.
The opject servei presented in this work 1s a large step in this direction. It provides the transparent
storage and retrieval of objects defined to the application. It does not go quite far enough to be
accepted as a database programming language. The major missing piece is the difference
petween the memory management for persistent and dynamic objects.

A true object-onented database programming language would be an ideal development
vehicle for the creaiion of CASE environments. The ‘one-level store’ abstraction would be a
natural pan of such a language. Therefore, programmers would not have to concern themselves
with the location of objects. Disk-resident objects would be treated identically to dynamic ones.
Objects would be read from the persistent store 1n a transparent manner. However, the real
advantage to the extensions proposed below are:

» The represeniation of persistent objects would be as close as possible to their dynamic
representation A great deatl of computing muscle 1s expended with the current

implementation translating between the two representations.

' This means that all classes defined to the application are persistent. This is contrast with the current
implementation, whaere only specified classes are capable of being wntten to a persistent store.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

- The message passing kernei of the language would be modified such that pointers to
persistent and dynamic objects would be identical in format! Whether the receiver of the
message was dynamic or persistent would be resolved when the message was sent.

* All of the objects in the persistent store would be saved in a single ZIM database file This
approach has a number of advantages:

1) There is no requirement to maintain consistency between the ZIM schema and
the object server's metadata. Nor do objects have to conform to a ZIM record
format. This is a major benefit, since maintaining this consistency was found to
be problematic.

2) Itis possible to implement clustering strategies, where the components of large,
complex objects are stored contiguously in the object base This could allow
major performance improvements, since objects which are likely to be used
together would be stored and retrieved from the persistent object store as a unit.
Disk search times would be reduced as a resulit.

The following sections describe a design for extensions to Objective-C which would make 1t a true
database pregramming language.

Buffer anci Segment Management in a Single Qbject Repository

The advantage to storing all of the objects in the object store in a single ZIM database file
is that it allows greater flexibility in the implementation. For example, since there would no longer
be a requirement to store definitions in the ZIM schema, all of the constraints piaced on metadata

management w~uld be up to the implementer. As a result, not all instances of a class would be

' Under the present implementation, references between dynamic objects are via reguiar 4-byte pointers
while references between persistent objects are represented as 8-byte doubles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

necessarily stored together. Objects could be clustered on a more application-specific basis. For
example, all of the sub-components of a toolset diagram could be stored together in a single
segment. This would minimize the number of disk head movements required to retrieve a
complex object from the object base.
The suggested implementation would be as foilows:
« Asfar as the ZIM database schema was concerned, the object repository would have two
fields
(1) the segment number (4-byte int, indexed)
(2) the segment (1000-byte char)
All persistent objects would be written directly into segments. Segments would also
contain a reference to the next segment - for objects which span multiple segments -
and a pointer to the next available offset within the segment for an object to be placed.
Segment compaction would be performed by the garbage collector. Obviously, variable-
length objects such as Strings and Arrays will require special handling. Since they no
longer have to match the structure of a ZIM record, the format of persistent objects is also
under the control of the implementer. The persistent format of a class's instances should
be identical to its dynamic representation. Any additional information required by the
object server could be placed before the object's offset in the segment as an 'object
header'. For example, t may be useiul to store such things as the object's OID, its lock
status, its owner, its version, and a byte for use by the mark-sweep garbage collector.
- A second ZIM database file would contain the persistent object table. The table entries

would consist of:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

(M the Object Identifier (4-byte int, indexed)

(2) the object's location {4-byte int)
[segment # + offset]

Objects would be contained in one or more segments. The object's physical location
would consist of a 19-bit segment number and a 13-bit offset!. A persistent object table
is required in order to allow for the movement of objects within and between segments.

For example, if the object base garbaga collector is to compact the storage reclaimed

within segments, it will be necessary to move objects within them.

= Since ZIM concurrency control mechanism implicitly locks at the page level, manipulating
segments of this size yields a segment locking strategy. In addition, the transaction
commit and rollback scheme supported by ZIM works at the page level, so consistency Is
maintained at the segment level. Lastly, ZIM's buffer management is also based on
pages.

The key to turning Objective-C into a database programming language is the introduction
of an object table into the anguage's memory management. This approach is based on the
Smalitalk language model. The contents of the object table would be based on the persistent
object table described above. At run-time, references from one object to another are actually
handled as offsets into the object table. All objects - both persistent and dynamic - are

referenced via the object table2. The contents of the object table contain either the object's

' This scheme was motivated by the foliowing: ZIM databases may be configured to have page sizes of 1K,
2K or 4K. Since we want 10 use offsats into segmaents to form part of the address of the object, we must

allow for a maximum offset of 4096. This translates to 2'2. This leaves 19 bits of a 32-bit intager to
represent the segment number.

2 For dynamic Objective-C objects, re-write (*_alloc), (*_reailoc), (*_dealloc), and (*_copy) tunctions so
that the memory model racognizes the added level of indirection provided by the object table.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

location in memory, or the object's location in the object base. As persistent objects are read into
buffers by the CbjectManager, their location would be updated in the object table. The message
passing mechanism would require modification to recognize this additional indirectior..

The addition cf an object table would aiso require a modification of the code generated by
the Objective-C compiler. Presently, each miessage is passed the variabie seff, where self is
memory address of the message receiver. Under this scheme, self could be either the OID of the
receiver in the object table, or its memory location. Both of these alternatives pose a problem. If
self is assigned the value of the table offset, the compiler wiil handle the locations of instance
variahles incorrectly. At present, all instance variable references in Objective-C code is compiled
to self->instVarName. if self is an object table offsat, offsets generated in this way will be
incorrect. If self is passed as the actual address of the receiving object, then assignments of self
will be incorrect, since the object's address, rather than its OID would be used.

One possible solution could be to add an additional parameter to the functions which are
generated by Objective-C to implement methods. This new parameter would be called location,
and would be the actual memory location of the object in question. Self wouid contain the
object's OID, and location would contain the object's address. Instance variable references would
now compile to location->instVarName, rather than self->instVarName. This approach would
ensure that message sends to self would be handled correctly.

The object table entries would contain a variable which indicates whether an object is

located on the heap or in the ObjectManager. Note that the entire object table wouid not be read

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

at start up. Instead, entries would be read as reterences to them were actuzily made available to

the applicaiion as segments are read!.

T How the object table is actually implemented in memory would be a critical implementation detail. While
OIDs are described here as offsets into the object table, this scheme requires an array as large as the

highest object identifier number, which couid be 231 Alternative implementations could be based on hash

tables or B -trees.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

182

Figure 9.2: Object Table Memory Management

All references between objects under the current memory management model are
direct - je. through normal C pointers

isa ivt ive iv3

| [3 | & | & |

Isa isa

Introducing an object table gives an added layer of indiraction in the object references.
References to other objects are now via offsets in the object table. The message-passing
kernel must be modified to recognize this.

e [] [—

The violation of encapsulation which is allowed by the Objective-C compiler would be

even more fraught with danger, since the applications developer would also have to explicitly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

recognize this added level of indirection. This is in addition to the present requirement that any
developer who wishes to violate an object's encapsulation must test whether or not the object has
been read into memory.

The objects managed by the system would physically reside in two locations: either on
the heap as dynamically created objects, or in the object base buffers managed by the
ObjectManager. New objects would be allocated on the heap, and their OIDs and locations
added to the object table. New OIDs would be ailocated sequentially and would not be re-used.
All of the classes defined to the application would be capable of being written to the persistent
siore. Whenever the client application issued a commit, all of the objects reachable from the root
object would be written to the object base. Any objects which are preser ‘ly located in the heap
would be copied to the ObjectManager's tuffers, and their dynamically allocated memory
returned to the heap. Their new location would then be registered in the object table'.

When a message was sent to a persistent object which was not in memory, its segment
would be read. All of the objects in the segment would have their locations in the object table
update to point to their location in the ObjectManager's buffers. All of the objects referenced by
the objects in the segment would have their OIDs added to the object table. Thus, objects which
have no possibility of being accessed by the application would not be referenced by t. When a
segment was committed to the object base, the object's memory location would have to be
replaced in the object table by its location in the persistent store.

Using this approach, it would be relatively straightforward to implement a virtual memory

for Objective-C. As the butfers of the ObjectManager became full, the segments they contain

1 Note that this implies that the becomes: message must be supported in this implementation Recall that
this message modifies the memory location pointed at by an antry in the object table. In order for this
message to work, gll objects must be referenced via an cbject table.

|
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

could be written to a file in the users working directory. The objects contained in the swapped
segments would have a toggle in their object table entry modified to refiect this change. New
messages to swapped out objects would result in their segments being returned to memory.
Another possible extension to the object server's functionality which is made possible by
these proposed changes would be to implement a distributed object server architecture. ZIM
allows different database files to be located in separate directories. The location of each database
file is contained in a file called areas.zim. Using SUN's Network File System, the database files
could be located anywhere on the network. Under the normal ZIM environment, this allows the
vertical partitioning of the database. All records of a certain entity set may be stored on the same
physical file system. Using the approach discussed here, each file could represent a separate
object repository. instances of any number of classes could be contained in each of these
repositories, thus providing a truly distributed environment. One could, for example, easily
envisage the different toolset users maintaining private design information on their own local

object stores, with shared objects maintained in one or more shared object bases.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

References

(Aho, Hopcroft and Uliman, 1983) Aho, A., Hopcroft, J., Ullman, J., Data Structures
and Algorithms. Addison-Wesley Publishing Co., Don Mills, Ont., 1983.

(Andrews and Harris, 1987) Andrews, T., Harris, C. "Combining Language and Database
Advances in an Object-Oriented Development Environment”. _QQPSIA 1987

Proceedings, p. 430-440.

(Atkinson and Buneman, 1987) Alkinson, M.P., Buneman, O.P., "Types and
Persistence in Database Programming Languages", ACM Computing Surveys, vol 19,
no. 2, June, 1987, p. 105-190.

(Atwood, 1985) Atwood, T., "An Object-Oriented DBMS iur Design Support Applications”,
COMPINT 1985, p. 299-307.

(Banjeree, et al, 1987) Banjeree, J., Chou, H., Garza, J., Kim, W., Woelk, D., Ballou,
N., Kim, H. "Data Model Issues for Object-Oriented Applications” ACM Transactions on
Office Information Systems, Vol. 5, No. 1, January 1987, p. 3-26.

(Barbedette and Richard, 1986) Barbedette, G., Richard, P. "VOQOD: The Verso Object-
Oriented Data Model". Research Report #580, Institut National de Recherche en
Informatique at en Automatique, France, November 1986.

(Baroody and DeWitt, 1981) Baroody, A., DeWitt, D., "An Object-Oriented Approach to
Database System Implementation”. ACM Transactions on Database Systems,
December, 1981, Vol. 6, No. 4, p. 576-601.

(Belkhatir and Estublier, 1988) Belkhatir, N., Estublier, J., "Expenence With a Data Base
of Programs", COMPSAC 1986 Proceedings, p. 84-91.

(Bennett, i987) Bennett, J. "The Design and Implementation of Distributed Smalitalk”
QOPSLA 1987 Proceedings, p. 318-330.

(Bernsteln, 1987) Bernstein, P. "Database System Support for Software Engineering - An
Extended Abstract”. Proceedings of the Ninth Internatiopal Conference on Software
Engineering, April, 1987, p. 166-178.

(Blgelow, 1988) Bigelow, J. "Hypertext and CASE" [EEE Software, March, 1988, p. 23-
27.

(Bloom and Zdonik, 1987) Bloom, T., Zdonik, S. "Issues in the Design of Object-Oniented
Database Programming Languages". . QOPSLA 1387 Proceedings, p. 430-440.

(Booch, 1986) Booch, G. "Object-Oriented Development”. IEEE Transactions on Software
Engineering, Vol. SE-12, No. 2, February, 1986, p. 211-221

_

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

(Borgida, Mylopolous and Wong, 1984) Borgida, A., Mylopolous, J., Wong, H.K.T.
"GeneralizatiorvSpecialization as a Basis for Goftware Specification”. In Brodie, M.,
Mylopolous, J., Schmidt, J. (ed.) On Conceptual Modelling., Springer-Verlac Berlin,
Germany, 1984.

{Brod!a, 1981) Brodie, M., "On Modelling Behavioral Semantics of Databases”. Progc, 7th

mﬂmmnammﬂemmxmﬂm_abasﬁ Cannes, France, September,
1981.

(Brodie, 1984) Brodie, M. "On the Development of Data Models”. in Brodie, M.,

Mylopolous, J., Schmidt, J. (ed.) _Qn Conceptual Modelling, Springer-Verlag, Berlin,
Germany, 1984.

(Brodie and Ridjanovic, 1984) Brodie, M., Ridjanovic, "On the Design and Specification
ot Database Transactions”. In Brodie, M., Mylopolous, J., Schmidt, J. (ed.) .Qn

Conceptual Modelling, Springer-Verlag, Berin, Germany, 1984.

(Brooks, 1987) Brooks, F.P., "No Silver Bullet - Essence and Accidents of Software
Engineering", IEEE Computer, April, 1987, p. 10-19.

(Chifosky, 1988) Chifosky, E. "Software Technology People Can Really Use". IEEE
Software, March, 1988, p. 8-10.

(Chikofsky and Rubenstein, 1988) Chikofsky, E., Rubenstein, B. "CASE: Reliability
Engineering for Information Systems". /EEE Software, March, 1988, p. 11-16.

(Cockshot, et al, 1984) Cockshot, W.P., Atkinson, M.P., Chishoim, K.J., Bailey, P.J,
Morrison, R., "Persistent Object Management System" s_gima[g_&amgg_ang

Experience, vol. 14, 1984, p. 49-71.

(Copeland and Khoshatlan, 1985) Copeland, G., Khoshafian, S. "A Decomposii.un
Storage Model". i - : i

Management of Data, 1985, p. 268-279.

(Cox, 1984) Cox, B. "Message/Object Programming: An Evolutionary Change in
Programming Technology". /EEE Software, January 1984, p. 50-61.

(Cox, 1986) Cox, B., Qbject-Orienled Programming. An Evolutionary Approach, Addison-
Wesley Pubiishing Company, Don Mills, Ontario, 1986.

(Cox and Schmucker, 1987) Cox, B., Schmucker, K. "PRODUCER: A Tool for
Translating Smalltalk-80 to Objective-C". QQOPSLA 1987 Proceedings, p. 423-429.

(Cureton, 1988) Cureton, B. "The Future of Unix in the CASE Renaissance”. /EEE
Software, March, 1988, p. 18-22.

(Date, 1983) Date. C.J.. An Introduction to Database Systems. Volume 1l Addison-Wesley
Publishing Company, Don Mills, Ontario, 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

(Decouchant, 1986) Decouchant, D. “"Design of a Distributed Object Manager for the
Smalitalk-80 System". QOQPSLA 1986 Proceedings. p. 444-452.

(Digitalk, 1986) Digitalk Inc., Smalltall/V Tutorial and Programming Handbook. Digitalk Inc ,
Los Angeles, CA, 1986.

(Dutf, 1986; Duff, C. "Designing an Efficient Language". Byre, August, 1986, p. 211-224.

(Elmasri and Navathe, 1984) Elmasri, R., Navathe, S., "Object Integration in Logical
Database Design". Proc, |EEE COMPDEC Conference, 1984.

(Eimasrl, Weeldreyer and Hevner, 1985) Elmasri, R.. Weeldreyer J., Hevner, A., "The
Category Concept: An Extension to the Entity- Relatnonal Model". InQa:a_BLtanm&dgg

Engineering 1, North-Holland Pub., 1985.
(Emeraude, 1987) "Emeraude: General Presentation”. 1987

(Fishman, et al, 1987) Fishman D., etal "Iris: An Object-Oriented Database Management
System". ACM Transactions on Office Information Systems, Vol. 5, No. 1, January 1987,
p. 48-69.

(Furtado and Casanova, 1985) Furtado, A., Casanova, M. "Updating Relational Views"

In Kim, W., Reiner, D, Batory, D. (ed.), Query Processing in Database Systems,
Springer-Verlag, Berlin, Germany, 1985.

(Gallo, Minot and Thomas, 1986) Gallo, F., Minot, R., Thomas, !, "The Object
Management System of PCTE as a Software Engineering Database Management
System”. Proc, COMPSAC '86, IEEE, 1986.

(Goldberg and Robson, 1983) Goidberg, A., Robson, D., Smalltalk-80: The Langquage
and its implementation, Addison-Wesley Publishing Company, Don Mills, Ontario,
1983.

(Hammer and MclLeod, 1981) Hammer, M., MciLeod, D., "Database Description with SOM
A Semantic Database Model". ACM Transactions on Database Systems, September,
1981, Vol. 6, No. 3.

(Hornick and Zdonik, 1987) Hornick, M., Zdonik, S. "A Shared, Segmented Memory
System for an Object-Oriented Database”. ACM Transactions on Office Information
Systemns, Vol. 5, No. 1, January 1987, p. 70-95.

(Katz, 1984) Katz, R. "Transaction Management in the Design Environment” In Gardain, G,

Gelenke, E. New Applications of Data Bases, Academic Press, Toronto, 1984.

(Khoshatian, et al, 1987) Khoshafian, S., Copeland, G., Jagodits, J., Boral, 4., Vaidurn,
E. "A Query Processing Strategy for the Decomposed Storage Mode!". Proceedings ot

the Third international Conterence on Data Enqineering, Feb., 1987, p. 636-643.

(Kim, et al, 1987) Kim, W., Banjeree, J., Chou, H., Garza, J, Woelk, D. "Composite
Object Support in an Object- Onented Database System” _Q_QE_SJ_A_]_Q_aﬁ_Emg_e_enmgs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

(Lalonde, Thomas and Pugh, 1986) Lalonde, W., Thomas, D., Pugh, J. "An Examplar
Based Smalltalk". OOPSI A 1986 Proceedings.

(Liskov, 1988) Liskov, B., "Data Abstraction and Hierarchy", QQPSLA 1987: Addendum to
the Proceedings. SIGPLAN Notices, vol. 23, Number 5, May, 1988.

(Lorie, et al, 1985) Lorie, R., Kim, W., McNabb, D., Plouffe, W., Meier, A. "Supporting
Complex Objects in a Relational Systemfor Englneenng Databases In Kim, W.,

Reiner, D., Batory, D. (ed.), Query Processing in Database Systems, Springer-Veriag,
Berlin, Germany, 1985.

(MacLennan, 1982) Maclennan, B. "Values and Objects in Programming Languages”.
SIGPLAN Notices, Vol. 17, No. 12, December, 1982, p. 70-79.

(Maier, et al, 1986) Maier, D., Stein, J., Otis, A., Purdy, A., "Development of an Object-
Onented DBMS". QOPSOLA 1986 Proceedings, p. 472-482.

(Mark and Rcussopoulos, 1986) Mark, L., Roussopoulos, N. "Metadata Management”.
IEEE Computer, December, 1986, p. 26-36.

(Martin, 1988) Martin, C. "Second-Generation CASE Tools: A Challenge to Vendors". /EEE
Software, March, 1988, p. 46-49.

(McCullough, 1987) McCullough, P. "Transparent Forwarding: First Steps”. _QOPSLA
1987 Proceedings, p 331-341.

(Merrow and Laursen, 1987) Merrow, T., Laursen, J. "A Pragmatic System for Shared
Persistent Objects” _QOPSLA 1987 Proceedings, p. 103-110.

(Nlerstrasz and Tsichritzls, 1985) Nierstrasz, O., Tsichritzis, D. "An Object-Oriented

Environment for OIS Applications”. Proceedings of the 1985 Conference on Very Large
Qatabase Systems, 1985, p. 335-345.

(Neuho!d, 1986) Neuhold, E. "Objects and Abstract Data Types in Information Systems”. In
Steel, T., Meersman, R. Daiabase Semantics, IFIP, 1986, p. 1-12.

(Penney and Stein, 1987) Penney, D.J.. Stein, J. "Class Modification in the GemStone
Object-Oriented DBMS". QQPSLA 1987 Proceedings, p- 111-117.

(Power and Weiss, 1988) Power, L., Weiss, Z., eds., QOPSIA 1987: Addendum to the
Proceedings. SIGPLAN Notices, vol. 23, Number 5, May, 1988.

(Purdy, Schuchardt and Maier, 1987) Purdy, A., Schuchardt B., Maier, D. "Integrating
an Object Server with Other Worids". ACM Transactions on Office Information Systems,
Vol. 5. No. 1, January 1987, p. 27-47.

(Rentsch, 1982) Rentsch, T. "Object Oriented Programming”. S/GPLAN Notices, Vol. 17,
No. 9, September, 1982, p. 51-56.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

(Rumbaugh, 1987) Ri'mbaugh, J. "Relations as Semantic Constructs in an Object-Oriented

Language”. _QOPSLA 1987 Proceedings, p. 466-481.

(Skarra and Zdonik, 1986) Skarra, A., Zdonik, S. "The Management of Changing Types in
an Object-Oriented Database”. QOPSLA 1986 Proceedings, p. 483-495

(Smith and Zdonik, 1987) Smith. K., Zdonik, S. "!Intermedia: A Case Study of the
Ditterence Between Relational and Object-Oriented Database Systems”. QQPSLA
1987 Proceedings. p. 452-465.

(Stetik and Bobrow, 1985) Stefik, M., Bobrow, D. “Object-Oriented Programming:
Themes and Variations". The Al Magazine, 1985, p. 40-62.

(Stein and Maier, 1988) Stein, J., Maier, D. "Concepts in Object-Oriented Data
Management”. Database Programming and Design, Aprii, 1988, p. 58-67

(Stonebraker, Anton and Hanson, 1987) Stonebraker, M., Anton, J., Hanson, E.
"Extending a Database Ssytem with Procedures”. ACM Transactions on Database
Systems, Vol. 12, No. 3, September 1967, p. 350-376.

(Stonebraker and Rowe, 1986) Stonebraker, M., Rowe, L. "The Design ot POSTGRE""
ACM, 1986. p. 340-355.

(Stroustrup, 1986) Stroustrup, B. "An Overview of C++". SIGPLAN Notices, Vol. 21, No
10, October, 1986, p. 7-18.

(Stroustrup, 1988) Stroustrup, B., "What is Object-Oriented Programming?", [|EEE
Software, May, 1988, p. 10-20.

(Symonds, 1988) Symounds, A. "Creating a Software-Engineering Knowledge Base" /EEE
Software, March, 1988, p. 50-56.

(Tsichritzis, 1981) Tsichritzis, D. "Integrating Data Base and Message Systems" IEEE,
1981, p. 356-362.

(Tsichritzis and Lochovsky, 1982) Tsichritzis, D., Lochovsky. F. Data Models. Prentice-
Hall, Englewood Ciiffs, N.J., 1982.

(Wlederhold, 1984) Wiederhold, G. "Knowledge and Database Management" JEEE
Software, December, 1984, p. 63-73.

(Wiederhold, 1986) Wiederhold, G. "Views, Objects, and Databases" [EEE Computer,
December, 1986, p. 37-44.

(Wile and Allard, 1986) Wile, D., Allard, D., "Worlds: an Organizing Structure for Object-
Bases”, COMPSAC 1986 Proceedings, p. 16-26.

(Zaniolo, et al) Zaniolo, C., Ait-Kaci, H., Beech, D., Cammarata, S, Kerschberg, L, Maier
D. "Object-Criented Database Systems and Knowledge Systems”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

(Zanthe, 1986) Zanthe Information Inc. ZIM Programming Language Interface, June, 1986.

(Zdonlk, 1984) Zdonik, S. "Object Management System Concepts”. Proceedings of the
Second ACM-SIGOA Conference on Office information Systems, 1984, p. 13-18.

(Zdonik, 1986) Zdonik, S., "Maintaining Concistency in a Database with Changing Types".
Proceedings of the Object-Oriented Programming Workshop, June, 1986, p. 120-127.

(ZIntz, 1988) Zintz, W. "Moving From C to Object-Oriented C*. UnixWorld, May, 1983, p.
60-66.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

